Efficient parameter estimation for spatio-temporal models of pattern formation: case study of Drosophila melanogaster

MOTIVATION Diffusable and non-diffusable gene products play a major role in body plan formation. A quantitative understanding of the spatio-temporal patterns formed in body plan formation, by using simulation models is an important addition to experimental observation. The inverse modelling approach consists of describing the body plan formation by a rule-based model, and fitting the model parameters to real observed data. In body plan formation, the data are usually obtained from fluorescent immunohistochemistry or in situ hybridizations. Inferring model parameters by comparing such data to those from simulation is a major computational bottleneck. An important aspect in this process is the choice of method used for parameter estimation. When no information on parameters is available, parameter estimation is mostly done by means of heuristic algorithms. RESULTS We show that parameter estimation for pattern formation models can be efficiently performed using an evolution strategy (ES). As a case study we use a quantitative spatio-temporal model of the regulatory network for early development in Drosophila melanogaster. In order to estimate the parameters, the simulated results are compared to a time series of gene products involved in the network obtained with immunohistochemistry. We demonstrate that a (mu,lambda)-ES can be used to find good quality solutions in the parameter estimation. We also show that an ES with multiple populations is 5-140 times as fast as parallel simulated annealing for this case study, and that combining ES with a local search results in an efficient parameter estimation method.

[1]  Hidde de Jong,et al.  Modeling and Simulation of Genetic Regulatory Systems: A Literature Review , 2002, J. Comput. Biol..

[2]  Xin Yao,et al.  Stochastic ranking for constrained evolutionary optimization , 2000, IEEE Trans. Evol. Comput..

[3]  Reinhard Lohmann,et al.  Application of Evolution Strategy in Parallel Populations , 1990, PPSN.

[4]  Hans-Georg Beyer,et al.  Toward a Theory of Evolution Strategies: Self-Adaptation , 1995, Evolutionary Computation.

[5]  Johannes Jaeger,et al.  Pattern formation and nuclear divisions are uncoupled in Drosophila segmentation: comparison of spatially discrete and continuous models , 2004 .

[6]  J. Reinitz,et al.  Rapid preparation of a panel of polyclonal antibodies to Drosophila segmentation proteins , 1998, Development Genes and Evolution.

[7]  Carmen G. Moles,et al.  Parameter estimation in biochemical pathways: a comparison of global optimization methods. , 2003, Genome research.

[8]  Jeffrey Horn,et al.  Handbook of evolutionary computation , 1997 .

[9]  B. Alberts,et al.  Studies of nuclear and cytoplasmic behaviour during the five mitotic cycles that precede gastrulation in Drosophila embryogenesis. , 1983, Journal of cell science.

[10]  David H. Sharp,et al.  Dynamic control of positional information in the early Drosophila embryo , 2004, Nature.

[11]  Stefano Tarantola,et al.  Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models , 2004 .

[12]  Natal A. W. van Riel,et al.  Dynamic modelling and analysis of biochemical networks: mechanism-based models and model-based experiments , 2006, Briefings Bioinform..

[13]  J. Delosme,et al.  An Efficient Simulated Annealing Schedule : Implementation and Evaluation , 1988 .

[14]  Heinz Mühlenbein,et al.  The parallel genetic algorithm as function optimizer , 1991, Parallel Comput..

[15]  John Reinitz,et al.  Registration of the expression patterns of Drosophila segmentation genes by two independent methods , 2001, Bioinform..

[16]  David H. Sharp,et al.  A connectionist model of development. , 1991, Journal of theoretical biology.

[17]  Thomas Bäck,et al.  An Overview of Evolutionary Computation , 1993, ECML.

[18]  Pavel Brazdil,et al.  Proceedings of the European Conference on Machine Learning , 1993 .

[19]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[20]  David H. Sharp,et al.  Mechanism of eve stripe formation , 1995, Mechanisms of Development.

[21]  Douglas B. Kell,et al.  Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation , 1998, Bioinform..

[22]  L. Wolpert Developmental Biology , 1968, Nature.

[23]  Zbigniew Michalewicz,et al.  Handbook of Evolutionary Computation , 1997 .

[24]  Robert Michael Lewis,et al.  Implementing Generating Set Search Methods for Linearly Constrained Minimization , 2007, SIAM J. Sci. Comput..

[25]  Leon Glass,et al.  Reverse Engineering the Gap Gene Network of Drosophila melanogaster , 2006, PLoS Comput. Biol..

[26]  Yuefan Deng,et al.  Parallel Simulated Annealing by Mixing of States , 1999 .

[27]  John Reinitz,et al.  Spatio-Temporal Registration of the Expression Patterns of Drosophila Segmentation Genes , 1999, ISMB.

[28]  Tamara G. Kolda,et al.  Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods , 2003, SIAM Rev..

[29]  David H. Sharp,et al.  Dynamical Analysis of Regulatory Interactions in the Gap Gene System of Drosophila melanogaster , 2004, Genetics.

[30]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[31]  Xin Yao,et al.  Search biases in constrained evolutionary optimization , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[32]  Erick Cantú-Paz,et al.  A Summary of Research on Parallel Genetic Algorithms , 1995 .

[33]  Venkat Venkatasubramanian,et al.  A hybrid genetic algorithm for efficient parameter estimation of large kinetic models , 2004, Comput. Chem. Eng..

[34]  Dan Boneh,et al.  On genetic algorithms , 1995, COLT '95.

[35]  N. V. van Riel Dynamic modelling and analysis of biochemical networks: mechanism-based models and model-based experiments. , 2006, Briefings in bioinformatics.

[36]  Robert Hooke,et al.  `` Direct Search'' Solution of Numerical and Statistical Problems , 1961, JACM.

[37]  S. Leibler,et al.  Establishment of developmental precision and proportions in the early Drosophila embryo , 2002, Nature.

[38]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[39]  Gregory T. Reeves,et al.  Quantitative models of developmental pattern formation. , 2006, Developmental cell.

[40]  L. Wolpert Positional information and the spatial pattern of cellular differentiation. , 1969, Journal of theoretical biology.

[41]  John Reinitz,et al.  A database for management of gene expression data in situ , 2004, Bioinform..

[42]  Jimmy Lam An Efficient Simulated Annealing Schedule: Derivation , 1988 .

[43]  D. Sharp,et al.  Stripe forming architecture of the gap gene system. , 1998, Developmental genetics.

[44]  David H. Sharp,et al.  Quantitative and predictive model of transcriptional control of the Drosophila melanogaster even skipped gene , 2006, Nature Genetics.

[45]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.