Past terrestrial hydroclimate sensitivity controlled by Earth system feedbacks

[1]  A. Sellar,et al.  Simulation of the mid-Pliocene Warm Period using HadGEM3: experimental design and results from model–model and model–data comparison , 2021, Climate of the Past.

[2]  J. Lora,et al.  Influence of stationary waves on mid-Pliocene atmospheric rivers and hydroclimate , 2021 .

[3]  W. Peltier,et al.  Mid-Pliocene West African Monsoon rainfall as simulated in the PlioMIP2 ensemble , 2021, Climate of the Past.

[4]  J. Kiehl,et al.  Atmospheric rivers in high-resolution simulations of the Paleocene Eocene Thermal Maximum (PETM) , 2021, Palaeogeography, Palaeoclimatology, Palaeoecology.

[5]  M. Yoshimori,et al.  PMIP4/CMIP6 last interglacial simulations using three different versions of MIROC: importance of vegetation , 2021, Climate of the Past.

[6]  B. Otto‐Bliesner,et al.  Speleothems of South American and Asian Monsoons Influenced by a Green Sahara , 2020, Geophysical Research Letters.

[7]  B. Otto‐Bliesner,et al.  Past climates inform our future , 2020, Science.

[8]  W. Peltier,et al.  The Pliocene Model Intercomparison Project Phase 2: large-scale climate features and climate sensitivity , 2020 .

[9]  K. Wyser,et al.  Supplementary material to "Simulating the mid-Holocene, Last Interglacial and mid-Pliocene climate with EC-Earth3-LR" , 2020 .

[10]  A. Abe‐Ouchi,et al.  Pliocene Model Intercomparison Project (PlioMIP2) simulations using the Model for Interdisciplinary Research on Climate (MIROC4m) , 2020, Climate of the Past.

[11]  B. Otto‐Bliesner,et al.  Increased Climate Response and Earth System Sensitivity From CCSM4 to CESM2 in Mid‐Pliocene Simulations , 2020, Journal of Advances in Modeling Earth Systems.

[12]  C. Skinner,et al.  Atmospheric river changes shaped mid-latitude hydroclimate since the mid-Holocene , 2020 .

[13]  Chris,et al.  Evaluation of Arctic warming in mid-Pliocene climate simulations , 2020, Climate of the Past.

[14]  G. Foster,et al.  Atmospheric CO2 during the Mid-Piacenzian Warm Period and the M2 glaciation , 2020, Scientific Reports.

[15]  C. Stepanek,et al.  Contribution of the coupled atmosphere–ocean–sea ice–vegetation model COSMOS to the PlioMIP2 , 2020, Climate of the Past.

[16]  W. G. Strand,et al.  The Community Earth System Model Version 2 (CESM2) , 2020, Journal of Advances in Modeling Earth Systems.

[17]  Chuncheng Guo,et al.  PlioMIP2 simulations with NorESM-L and NorESM1-F , 2020 .

[18]  G. Ramstein,et al.  Modeling a modern-like pCO2 warm period (Marine Isotope Stage KM5c) with two versions of an Institut Pierre Simon Laplace atmosphere–ocean coupled general circulation model , 2020 .

[19]  Brady,et al.  A return to large-scale features of Pliocene climate: the Pliocene Model Intercomparison Project Phase 2 , 2020 .

[20]  Huayu Lu,et al.  Asian monsoon rainfall variation during the Pliocene forced by global temperature change , 2019, Nature Communications.

[21]  A. Haywood,et al.  The HadCM3 contribution to PlioMIP phase 2 , 2019, Climate of the Past.

[22]  J. Tierney,et al.  Simulation of Eocene extreme warmth and high climate sensitivity through cloud feedbacks , 2019, Science Advances.

[23]  B. Otto‐Bliesner,et al.  Contributions of aerosol‐cloud interactions to mid‐Piacenzian seasonally sea ice‐free Arctic Ocean , 2019, Geophysical Research Letters.

[24]  B. Otto‐Bliesner,et al.  Pliocene Warmth Consistent With Greenhouse Gas Forcing , 2019, Geophysical Research Letters.

[25]  M. Biasutti Rainfall trends in the African Sahel: Characteristics, processes, and causes , 2019, Wiley interdisciplinary reviews. Climate change.

[26]  J. Singarayer,et al.  Investigating the feedbacks between CO2, vegetation and the AMOC in a coupled climate model , 2019, Climate Dynamics.

[27]  B. Otto‐Bliesner,et al.  Pliocene and Eocene provide best analogs for near-future climates , 2018, Proceedings of the National Academy of Sciences.

[28]  G. Ramstein,et al.  Quantifying East Asian Summer Monsoon Dynamics in the ECP4.5 Scenario With Reference to the Mid‐Piacenzian Warm Period , 2018, Geophysical Research Letters.

[29]  J. Tierney,et al.  Ice-sheet modulation of deglacial North American monsoon intensification , 2018, Nature Geoscience.

[30]  Sarah M. Kang,et al.  Global energetics and local physics as drivers of past, present and future monsoons , 2018, Nature Geoscience.

[31]  M. Kunitski,et al.  Double-slit photoelectron interference in strong-field ionization of the neon dimer , 2018, Nature Communications.

[32]  A. Fedorov,et al.  Wetter subtropics in a warmer world: Contrasting past and future hydrological cycles , 2017, Proceedings of the National Academy of Sciences.

[33]  B. Otto‐Bliesner,et al.  Amplified North Atlantic warming in the late Pliocene by changes in Arctic gateways , 2017 .

[34]  D. Ibarra,et al.  The Neogene de-greening of Central Asia , 2016 .

[35]  M. Werner,et al.  Tropical circulation intensification and tectonic extension recorded by Neogene terrestrial δ18O records of the western United States , 2016 .

[36]  Sonia I. Seneviratne,et al.  Land–atmosphere feedbacks amplify aridity increase over land under global warming , 2016 .

[37]  S. Feakins,et al.  Cooling and drying in northeast Africa across the Pliocene , 2016 .

[38]  K. Gwet Testing the Difference of Correlated Agreement Coefficients for Statistical Significance , 2016, Educational and psychological measurement.

[39]  J. Mitrovica,et al.  The PRISM4 (mid-Piacenzian) paleoenvironmental reconstruction , 2016 .

[40]  C. Brierley,et al.  Comparing the impacts of Miocene–Pliocene changes in inter-ocean gateways on climate: Central American Seaway, Bering Strait, and Indonesia , 2016 .

[41]  B. Otto‐Bliesner,et al.  The Pliocene Model Intercomparison Project (PlioMIP) Phase 2: scientific objectives and experimental design , 2016 .

[42]  A. Haywood,et al.  Integrating geological archives and climate models for the mid-Pliocene warm period , 2016, Nature Communications.

[43]  G. Messori,et al.  Impacts of dust reduction on the northward expansion of the African monsoon during the Green Sahara period , 2016 .

[44]  K. Lawrence,et al.  Tightly linked zonal and meridional sea surface temperature gradients over the past five million years , 2015 .

[45]  P. O’Gorman,et al.  The Response of Precipitation Minus Evapotranspiration to Climate Warming: Why the “Wet-Get-Wetter, Dry-Get-Drier” Scaling Does Not Hold over Land , 2015 .

[46]  D. J. Hill The non-analogue nature of Pliocene temperature gradients , 2015 .

[47]  Dim Coumou,et al.  The weakening summer circulation in the Northern Hemisphere mid-latitudes , 2015, Science.

[48]  B. Otto‐Bliesner,et al.  The Pliocene Model Intercomparison Project - Phase 2 , 2015 .

[49]  Tapio Schneider,et al.  Migrations and dynamics of the intertropical convergence zone , 2014, Nature.

[50]  Zhonghui Liu,et al.  A 12-Million-Year Temperature History of the Tropical Pacific Ocean , 2014, Science.

[51]  A. Haywood,et al.  Late Pliocene lakes and soils: a global data set for the analysis of climate feedbacks in a warmer world , 2014 .

[52]  Sarah M. Kang,et al.  Contribution of ocean overturning circulation to tropical rainfall peak in the Northern Hemisphere , 2013 .

[53]  R. Seager,et al.  Diagnostic Computation of Moisture Budgets in the ERA-Interim Reanalysis with Reference to Analysis of CMIP-Archived Atmospheric Model Data , 2013 .

[54]  M. Huber,et al.  State-dependent climate sensitivity in past warm climates and its implications for future climate projections , 2013, Proceedings of the National Academy of Sciences.

[55]  G. Ramstein,et al.  A comparative study of large-scale atmospheric circulation in the context of a future scenario (RCP4.5) and past warmth (mid-Pliocene) , 2013 .

[56]  M. Huber,et al.  The challenge of simulating the warmth of the mid-Miocene climatic optimum in CESM1 , 2013 .

[57]  K. Lawrence,et al.  Patterns and mechanisms of early Pliocene warmth , 2013, Nature.

[58]  Eelco J. Rohling,et al.  Making sense of palaeoclimate sensitivity , 2012, Nature.

[59]  A. Ravelo,et al.  A deep Eastern Equatorial Pacific thermocline during the early Pliocene warm period , 2012 .

[60]  D. Frierson,et al.  Robust future precipitation declines in CMIP5 largely reflect the poleward expansion of model subtropical dry zones , 2012 .

[61]  A. Haywood,et al.  Global vegetation dynamics and latitudinal temperature gradients during the mid to Late Miocene (15.97-5.33 Ma) , 2012 .

[62]  G. Ramstein,et al.  A sensitivity study to global desertification in cold and warm climates: results from the IPSL OAGCM model , 2012, Climate Dynamics.

[63]  Gabriel A. Vecchi,et al.  Greenhouse warming and the 21st century hydroclimate of southwestern North America , 2010, Proceedings of the National Academy of Sciences.

[64]  Inez Y. Fung,et al.  Mid-latitude afforestation shifts general circulation and tropical precipitation , 2010, Proceedings of the National Academy of Sciences.

[65]  L. Ruby Leung,et al.  Radiative impact of mineral dust on monsoon precipitation variability over West Africa , 2010 .

[66]  G. Bonan,et al.  Changes in Arctic vegetation amplify high-latitude warming through the greenhouse effect , 2009, Proceedings of the National Academy of Sciences.

[67]  Michel Brunet,et al.  Chad Basin: Paleoenvironments of the Sahara since the Late Miocene , 2009 .

[68]  T. Herbert,et al.  Greatly Expanded Tropical Warm Pool and Weakened Hadley Circulation in the Early Pliocene , 2009, Science.

[69]  H. Dowsett,et al.  Mid-Pliocene equatorial Pacific sea surface temperature reconstruction: a multi-proxy perspective , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[70]  B. Mcavaney,et al.  Climate feedbacks under a very broad range of forcing , 2009 .

[71]  Q. Min,et al.  Evidence of mineral dust altering cloud microphysics and precipitation , 2008 .

[72]  P. Valdes,et al.  A new global biome reconstruction and data‐model comparison for the Middle Pliocene , 2008 .

[73]  V. Mosbrugger,et al.  Eocene vegetation patterns reconstructed from plant diversity — A global perspective , 2007 .

[74]  B. Soden,et al.  Robust Responses of the Hydrological Cycle to Global Warming , 2006 .

[75]  R. Stouffer,et al.  Response of the ITCZ to Northern Hemisphere cooling , 2006 .

[76]  Charles S. Zender,et al.  Impact of Desert Dust Radiative Forcing on Sahel Precipitation , 2005 .

[77]  P. deMenocal,et al.  Biomarker records of late Neogene changes in northeast African vegetation , 2005 .

[78]  R. Seager,et al.  Mechanisms of ENSO‐forcing of hemispherically symmetric precipitation variability , 2005 .

[79]  Sumit Ghosh,et al.  Mio–Pliocene monsoonal record from Himalayan foreland basin (Indian Siwalik) and its relation to vegetational change , 2004 .

[80]  J. Neelin,et al.  Mechanisms Limiting the Northward Extent of the Northern Summer Monsoons over North America, Asia, and Africa* , 2003 .

[81]  J. G. Carter,et al.  δ18O in mollusk shells from Pliocene Lake Hadar and modern Ethiopian lakes: Implications for history of the Ethiopian monsoon , 2002 .

[82]  Yinon Rudich,et al.  Desert dust suppressing precipitation: A possible desertification feedback loop , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[83]  K. Trenberth,et al.  The Global Monsoon as Seen through the Divergent Atmospheric Circulation , 2000 .

[84]  T. Wigley,et al.  Global patterns of ENSO‐induced precipitation , 2000 .

[85]  Victor Brovkin,et al.  Simulation of an abrupt change in Saharan vegetation in the Mid‐Holocene , 1999 .

[86]  D. Rind Latitudinal temperature gradients and climate change , 1998 .

[87]  Brian J. Hoskins,et al.  Monsoons and the dynamics of deserts , 1996 .

[88]  P. deMenocal,et al.  Plio-Pleistocene African Climate , 1995, Science.

[89]  Syukuro Manabe,et al.  The influence of continental ice, atmospheric CO2, and land albedo on the climate of the last glacial maximum , 1987 .

[90]  J. Charney Dynamics of deserts and drought in the Sahel , 1975 .

[91]  Jie He,et al.  A re-examination of the projected subtropical precipitation decline , 2017 .

[92]  Paul J. Valdes,et al.  Earth system sensitivity inferred from Pliocene modelling and data , 2010 .