Stability and convergence properties of Bergman kernel methods for numerical conformal mapping

SummaryIn this paper we study the stability and convergence properties of Bergman kernel methods, for the numerical conformal mapping of simply and doubly-connected domains. In particular, by using certain wellknown results of Carleman, we establish a characterization of the level of instability in the methods, in terms of the geometry of the domain under consideration. We also explain how certain known convergence results can provide some theoretical justification of the observed improvement in accuracy which is achieved by the methods, when the basis set used contains functions that reflect the main singular behaviour of the conformal map.

[1]  J. Walsh Interpolation and Approximation by Rational Functions in the Complex Domain , 1935 .

[2]  J. G. Herriot,et al.  Application of the method of the kernel function for solving boundary-value problems , 1961 .

[3]  N. Papamichael,et al.  Two numerical methods for the conformal mapping of simply-connected domains , 1981 .

[4]  W. G. Bickley Two‐Dimensional Potential Problems for the Space Outside a Rectangle , 1934 .

[5]  P. K. Suetin Polynomials orthogonal over a region and Bieberbach polynomials , 1974 .

[6]  M. K. Warby,et al.  Pole-type singularities and the numerical conformal mapping of doubly-connected domains , 1984 .

[7]  R. Sherman Lehman,et al.  Development of the mapping function at an analytic corner. , 1957 .

[8]  J. M. Taylor,et al.  The condition of gram matrices and related problems , 1978, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[9]  M. Warby,et al.  The determination of the poles of the mapping function and their use in numerical conformal mapping , 1983 .

[10]  I. Kulikov W21, L∞-convergence of Bieberbach polynomials in a Lipschitz domain , 1981 .

[11]  Dieter Gaier,et al.  Konstruktive Methoden der konformen Abbildung , 1964 .

[12]  M. K. Warby,et al.  The treatment of corner and pole-type singularities in numerical conformal mapping techniques , 1986 .

[13]  I B Simonenko,et al.  ON THE CONVERGENCE OF BIEBERBACH POLYNOMIALS IN THE CASE OF A LIPSCHITZ DOMAIN , 1979 .

[14]  S. Bergman The kernel function and conformal mapping , 1950 .

[15]  C. A. Kokkinos,et al.  The Use of Singular Functions for the Approximate Conformal Mapping of Doubly-Connected Domains , 1984 .

[16]  A procedure for conformal maps of simply connected domains by using the Bergman function , 1970 .

[17]  H. Ŝvecoá On the Bauer's scaled condition number of matrices arising from approximate conformal mapping , 1970 .

[18]  N. Papamichael,et al.  Numerical Conformal Mapping of Exterior Domains , 1982 .

[19]  N. Papamichael,et al.  The Bergman Kernel Method for the Numerical Conformal Mapping of Simply Connected Domains , 1978 .

[20]  G. Polya,et al.  Isoperimetric Inequalities in Mathematical Physics. (AM-27), Volume 27 , 1951 .

[21]  J. Conway,et al.  Functions of a Complex Variable , 1964 .

[22]  G. Pólya,et al.  Isoperimetric inequalities in mathematical physics , 1951 .

[23]  D. Gaier Vorlesungen über Approximation im Komplexen , 1980 .