Simulation, Design and Analysis of Air-Breathing Combined-Cycle Engines for High Speed Propulsion

Desde la aparicion del turborreactor, el motor aerobico con turbomaquinaria ha demostrado unas prestaciones excepcionales en los regimenes subsonico y supersonico bajo. No obstante, la operacion a velocidades superiores requiere sistemas mas complejos y pesados, lo cual ha imposibilitado la ejecucion de estos conceptos. Los recientes avances tecnologicos, especialmente en materiales ligeros, han restablecido el interes por los motores de ciclo combinado. La simulacion numerica de estos nuevos conceptos es esencial para estimar las prestaciones de la planta propulsiva, asi como para abordar las dificultades de integracion entre celula y motor durante las primeras etapas de diseno. Al mismo tiempo, la evaluacion de estos extraordinarios motores requiere una metodologia de analisis distinta. La tesis doctoral versa sobre el diseno y el analisis de los mencionados conceptos propulsivos mediante el modelado numerico y la simulacion dinamica con herramientas de vanguardia. Las distintas arquitecturas presentadas por los ciclos combinados basados en sendos turborreactor y motor cohete, asi como los diversos sistemas comprendidos en cada uno de ellos, hacen necesario establecer una referencia comun para su evaluacion. Es mas, la tendencia actual hacia aeronaves "mas electricas" requiere una nueva metrica para juzgar la aptitud de un proceso de generacion de empuje en el que coexisten diversas formas de energia. A este respecto, la combinacion del Primer y Segundo Principios define, en un marco de referencia absoluto, la calidad de la trasferencia de energia entre los diferentes sistemas. Esta idea, que se ha estado empleando desde hace mucho tiempo en el analisis de plantas de potencia terrestres, ha sido extendida para relacionar la mision de la aeronave con la ineficiencia de cada proceso involucrado en la generacion de empuje. La metodologia se ilustra mediante el estudio del motor de ciclo combinado variable de una aeronave para el crucero a Mach 5. El diseno de un acelerador de ciclo combinado basado en el turborreactor sirve para subrayar la importancia de la integracion del motor y la celula. El diseno esta limitado por la trayectoria ascensional y el espacio disponible en la aeronave de crucero supersonico. Posteriormente se calculan las prestaciones instaladas de la planta propulsiva en funcion de la velocidad y la altitud de vuelo y los parametros de control del motor: relacion de compresion, relacion aire/combustible y area de garganta. ABSTRACT Since the advent of the turbojet, the air-breathing engine with rotating machinery has demonstrated exceptional performance in the subsonic and low supersonic regimes. However, the operation at higher speeds requires further system complexity and weight, which so far has impeded the realization of these concepts. Recent technology developments, especially in lightweight materials, have restored the interest towards combined-cycle engines. The numerical simulation of these new concepts is essential at the early design stages to compute a first estimate of the engine performance in addition to addressing airframe-engine integration issues. In parallel, a different analysis methodology is required to evaluate these unconventional engines. The doctoral thesis concerns the design and analysis of the aforementioned engine concepts by means of numerical modeling and dynamic simulation with state-of-the-art tools. A common reference is needed to evaluate the different architectures of the turbine and the rocket-based combined-cycle engines as well as the various systems within each one of them. Furthermore, the actual trend towards more electric aircraft necessitates a common metric to judge the suitability of a thrust generation process where different forms of energy coexist. In line with this, the combination of the First and the Second Laws yields the quality of the energy being transferred between the systems on an absolute reference frame. This idea, which has been since long applied to the analysis of on-ground power plants, was extended here to relate the aircraft mission with the inefficiency of every process related to the thrust generation. The methodology is illustrated with the study of a variable- combined-cycle engine for a Mach 5 cruise aircraft. The design of a turbine-based combined-cycle booster serves to highlight the importance of the engine-airframe integration. The design is constrained by the ascent trajectory and the allocated space in the supersonic cruise aircraft. The installed performance of the propulsive plant is then computed as a function of the flight speed and altitude and the engine control parameters: pressure ratio, air-to-fuel ratio and throat area.

[1]  D. R. Bartz Turbulent Boundary-Layer Heat Transfer from Rapidly Accelerating Flow of Rocket Combustion Gases and of Heated Air , 1965 .

[2]  D. Spalding,et al.  A NUMERICAL STUDY OF UNSTEADY FLUID FLOW IN IN-LINE AND STAGGERED TUBE BANKS , 1999 .

[3]  Marc A. Rosen,et al.  Sensitivity of exergy efficiencies of aerospace engines to reference environment selection , 2001 .

[4]  Cai Guobiao,et al.  Scaling of heat transfer in gas–gas injector combustor , 2011 .

[5]  Dimitri N. Mavris,et al.  A COMPARISON OF THERMODYNAMIC LOSS MODELS SUITABLE FOR GAS TURBINE PROPULSION : THEORY AND TAXONOMY Bryce , 2000 .

[6]  Guillermo Paniagua,et al.  Full Design of a Highly Loaded Fan by Multi-Objective Optimization of Through-Flow and High-Fidelity Aero-Mechanical Performances , 2012 .

[7]  P.J. Masson,et al.  Next Generation More-Electric Aircraft: A Potential Application for HTS Superconductors , 2009, IEEE Transactions on Applied Superconductivity.

[8]  M. McLinden,et al.  NIST Standard Reference Database 23 - NIST Thermodynamic and Transport Properties REFPROP, Version 7.0 , 2002 .

[9]  Wright-Patterson Afb,et al.  INVENT Modeling, Simulation, Analysis and Optimization , 2010 .

[10]  S. Murthy,et al.  Energy analysis of propulsion systems for high speed vehicles , 1989 .

[11]  U. Herrmann Multiple Discipline Optimization and Aerodynamic Off-Design Analysis of Supersonic Transport Aircraft , 2008 .

[12]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[13]  Linda R. Petzold,et al.  Numerical solution of initial-value problems in differential-algebraic equations , 1996, Classics in applied mathematics.

[14]  J. Moral,et al.  ESPSS Simulation Platform , 2010 .

[15]  S. L. Dixon,et al.  Fluid mechanics, thermodynamics of turbomachinery , 1966 .

[16]  Tetsuya Sato,et al.  A feasibility study of a new ATREX engine system of aft-turbine configuration , 2002 .

[17]  H. Seifert,et al.  Rocket Propulsion Elements , 1963 .

[18]  Yusuke Maru,et al.  Development status of mach 6 turbojet engine in JAXA , 2004 .

[19]  Dimitri N. Mavris,et al.  Analysis of Advanced Technology Impact on HSCT Engine Cycle Performance , 1999 .

[20]  Nicholas Cumpsty Jet Propulsion: A Simple Guide to the Aerodynamic and Thermodynamic Design and Performance of Jet Engines , 1997 .

[21]  John A. Bossard,et al.  The influence of turbomachinery characteristics on air turbo rocket engine operation , 2000 .

[22]  Chiang Juay Teo,et al.  An experimental study of flow friction and heat transfer in wavy microchannels with rectangular cross section , 2011 .

[23]  Claus Riegler,et al.  Some Aspects of Modeling Compressor Behavior in Gas Turbine Performance Calculations , 2001 .

[24]  Tomas Grönstedt Advanced Solvers for General High Performance Transient Gas Turbine Simulation Tools , 1999 .

[25]  J. Steelant,et al.  Preliminary Performance Analysis of the LAPCAT-MR2 by means of Nose-to-Tail Computations , 2012 .

[26]  Helmuth Hausen,et al.  Heat transfer in counterflow, parallel-flow, and cross-flow , 1983 .

[27]  Guillermo Paniagua,et al.  The Scimitar Precooled Mach 5 Engine , 2007 .

[28]  Robert M. Plencner Plotting component maps in the Navy/NASA Engine Program (NNEP): A method and its usage , 1989 .

[29]  Sung Jin Kim,et al.  Forced Convection in Microstructures for Electronic Equipment Cooling , 1999 .

[30]  P. Czysz,et al.  Energy analysis of high speed vehicle systems , 1990 .

[31]  Craig R. Davison,et al.  Capturing the Shape Variance in Gas Turbine Compressor Maps , 2009 .

[32]  H. Abbass,et al.  PDE: a Pareto-frontier differential evolution approach for multi-objective optimization problems , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[33]  Enrico Sciubba,et al.  Exergy analysis of hypersonic propulsion systems: Performance comparison of two different scramjet configurations at cruise conditions , 2008 .

[34]  J. H. Horlock,et al.  Availability and Propulsion , 1975 .

[35]  S. Murthy,et al.  Effectiveness of a Scram Engine , 1994 .

[36]  Guillermo Paniagua,et al.  Modeling, Analysis and Optimization of the Air-Turborocket Expander Engine , 2012 .

[37]  R. D. McCarty,et al.  Selected properties of hydrogen (engineering design data). Final report , 1981 .

[38]  Ming Su,et al.  Multi-stage axial flow compressors characteristics estimation based on system identification , 2008 .

[39]  Stuart W. Churchill,et al.  A general expression for the correlation of rates of transfer and other phenomena , 1972 .

[40]  R. Varvill,et al.  The SKYLON Spaceplane - Progress to Realisation , 2008 .

[41]  I. S. Ertesvåg Sensitivity of chemical exergy for atmospheric gases and gaseous fuels to variations in ambient conditions , 2007 .

[42]  Tomas Grönstedt,et al.  Development of Methods for Analysis and Optimization of Complex Jet Engine Systems , 2000 .

[43]  Alan Bond,et al.  The SKYLON Project , 2011 .

[44]  F. X. Kneizys,et al.  AFGL atmospheric constituent profiles (0-120km) , 1986 .

[45]  Rodrigo Martinez-Val,et al.  The evolution of jet airliners explained through the range equation , 2008 .

[46]  D. King-hele,et al.  Standard Atmosphere , 1964, Nature.

[47]  Joachim Kurzke,et al.  A New Compressor Map Scaling Procedure for Preliminary Conceptional Design of Gas Turbines , 2000 .

[48]  M. J. Moran,et al.  Fundamentals of Engineering Thermodynamics , 2014 .

[50]  E. Colgan,et al.  A practical implementation of silicon microchannel coolers for high power chips , 2005, Semiconductor Thermal Measurement and Management IEEE Twenty First Annual IEEE Symposium, 2005..

[51]  J. H. Kim,et al.  Performance prediction of axial flow compressors using stage characteristics and simultaneous calculation of interstage parameters , 2001 .

[52]  David W. Riggins,et al.  Thrust modeling for hypersonic engines , 1995 .

[53]  Yogendra Joshi,et al.  PARAMETRIC NUMERICAL STUDY OF FLOW AND HEAT TRANSFER IN MICROCHANNELS WITH WAVY WALLS , 2011 .

[54]  R. Varvill,et al.  Contrarotating Turbine Aerodesign for an Advanced Hypersonic Propulsion System , 2008 .

[55]  A. Bejan,et al.  Heat transfer handbook , 2003 .

[56]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[57]  Alan Bond,et al.  Overview of the development of heat exchangers for use in air-breathing propulsion pre-coolers , 1997 .

[58]  Tetsuya Sato,et al.  Development study of precooled-cycle hypersonic turbojet engine for flight demonstration , 2006 .

[59]  Guillermo Paniagua,et al.  Attenuation of Vane Distortion in a Transonic Turbine Using Optimization Strategies: Part I—Methodology , 2010 .

[60]  A. Bejan Advanced Engineering Thermodynamics , 1988 .

[61]  Armin Isselhorst HM7B Simulation with ESPSS Tool on ARIANE 5 ESC-A Upper Stage , 2010 .

[62]  J. H. Lewis Propulsive efficiency from an energy utilization standpoint , 1976 .

[63]  Jacques Periaux,et al.  Introduction to optimization and multidisciplinary design in aeronautics and turbomachinery : May 31-June 4, 2010 , 2010 .

[64]  Yusuke Maru,et al.  Development study on the atrex engine , 2003 .

[65]  David W. Riggins,et al.  High-speed engine/component performance assessment using exergy and thrust-based methods , 1996 .

[66]  Simon Feast,et al.  Heat Exchanger Design in Combined Cycle Engines , 2009 .

[67]  Nobuhiro Tanatsugu,et al.  Thermal design of a hydrogen heater for an air turboramjet engine , 1995 .

[68]  William H. Heiser,et al.  Hypersonic Airbreathing Propulsion , 1994 .

[69]  Jose A. Camberos,et al.  Characterization of Aerospace Vehicle Performance and Mission Analysis Using Thermodynamic Availability , 2010 .

[70]  David K. Schmidt,et al.  Mission Performance and Design Sensitivities of Air-Breathing Hypersonic Launch Vehicles , 1997 .

[71]  David W. Riggins,et al.  Methodology for Performance Analysis of Aerospace Vehicles Using the Laws of Thermodynamics , 2006 .

[72]  Sanford Gordon,et al.  Computer program for calculation of complex chemical equilibrium compositions , 1972 .

[73]  Riti Singh,et al.  Challenges of future aircraft propulsion: A review of distributed propulsion technology and its potential application for the all electric commercial aircraft , 2011 .

[74]  Richard Varvill,et al.  Heat exchanger development at Reaction Engines Ltd. , 2010 .

[75]  Carlo Cravero,et al.  A new model for the prediction of compressor performance maps , 2009 .

[76]  Kirk Christensen,et al.  Air Turborocket/Vehicle Performance Comparison , 1999 .

[77]  Waqar A. Khan,et al.  Convection heat transfer from tube banks in crossflow: Analytical approach , 2005 .

[78]  G. V. Brown,et al.  HTS machines as enabling technology for all-electric airborne vehicles , 2007 .

[79]  Oliver Knab,et al.  Advanced Cooling Circuit Layout for the VINCI Expander Cycle Thrust Chamber , 2002 .

[80]  Ge Manchu The Performance Estimation of Transonic Turbine at Design and Off-Design Conditions , 1987 .

[81]  M. Yovanovich,et al.  Fluid Flow and Heat Transfer from a Cylinder Between Parallel Planes , 2004 .

[82]  Robert O. Bullock,et al.  Aerodynamic design of axial-flow compressors , 1965 .

[83]  A. Nakayama,et al.  Numerical modelling for three-dimensional heat and fluid flow through a bank of cylinders in yaw , 2004, Journal of Fluid Mechanics.

[84]  Johan Steelant Sustained Hypersonic Flight in Europe: First Technology Achievements within LAPCAT II , 2011 .

[85]  Dimitri N. Mavris,et al.  A WORK AVAILABILITY PERSPECTIVE OF TURBOFAN ENGINE PERFORMANCE , 2001 .

[86]  Francesco Di Matteo,et al.  Start-Up Transient Simulation of a Liquid Rocket Engine , 2011 .

[87]  K. Multiobjective Optimization Using a Pareto Differential Evolution Approach , 2022 .

[88]  F. D. Matteo,et al.  SEMI-EMPIRICAL HEAT TRANSFER CORRELATIONS IN COMBUSTION CHAMBERS FOR TRANSIENT SYSTEM MODELLING , 2010 .

[89]  C. Builder,et al.  On the thermodynamic spectrum of airbreathing propulsion , 1964 .

[90]  M. Martinez-Sanchez Liquid rocket propulsion theory , 1993 .

[91]  Jack D. Mattingly,et al.  Elements of Propulsion: Gas Turbines and Rockets , 1996 .

[92]  Olivier Pin Using EcosimPro for Thermal and Thermo-Hydraulic Analysis in ESA , 2001 .

[93]  Yaoyu Li,et al.  Consistent initialization of system of differential-algebraic equations for dynamic simulation of centrifugal chillers , 2012 .

[94]  W. J. Whitney,et al.  Performance of a high-work low aspect ratio turbine tested with a realistic inlet radial temperature profile , 1984 .

[95]  Gerald Hagemann,et al.  Advanced Rocket Nozzles. , 1998 .

[96]  Von Karman,et al.  CADO : a Computer Aided Design and Optimization Tool for Turbomachinery Applications , 2010 .

[97]  Tetsuya Sato,et al.  Development study of a precooled turbojet engine , 2008 .

[98]  Wright-Patterson Afb,et al.  Design of Hybrid Propulsion Systems for Unmanned Aerial Vehicles , 2011 .

[99]  Guillermo Paniagua,et al.  Full Design of a Highly Loaded and Compact Contra-Rotating Fan Using Multidisciplinary Evolutionary Optimization , 2013 .

[100]  Man Mohan Rai,et al.  Robust Optimal Design With Differential Evolution , 2004 .

[101]  Guido Colasurdo,et al.  Analysis of air-turborocket performance , 1995 .

[102]  G. L. Coverse Extended parametric representation of compressor fans and turbines. Volume 2: Part user's manual (parametric turbine) , 1984 .