Terahertz emission from 2D nanomaterials

Group-IV monochalcogenides belong to a family of 2D layered materials. Monolayers of group-IV monochalcogenides GeS, GeSe, SnS and SnSe have been theoretically predicted to exhibit a large shift current owing to a spontaneous electric polarization at room temperature. Using THz emission spectroscopy, we find that above band gap photoexcitation with ultrashort laser pulses results in emission of nearly single-cycle THz pulses due to a surface shift current in multi-layer, sub-μm to few- μm thick GeS and GeSe, as inversion symmetry breaking at the crystal surface enables THz emission by the shift current. Experimental demonstration of THz emission by the surface shift current puts this layered group-IV monochalcogenides forward as a candidate for next generation shift current photovoltaics, nonlinear photonic devices and THz sources.

[1]  Suman Raj Panday,et al.  Strong second harmonic generation in two-dimensional ferroelectric IV-monochalcogenides. , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[2]  Chun Li,et al.  Role of boundary layer diffusion in vapor deposition growth of chalcogenide nanosheets: the case of GeS. , 2012, ACS nano.

[3]  J. J. Buckley,et al.  Tin and germanium monochalcogenide IV-VI semiconductor nanocrystals for use in solar cells. , 2011, Nanoscale.

[4]  Kateryna Kushnir,et al.  Ultrafast Zero-Bias Photocurrent in GeS Nanosheets: Promise for Photovoltaics , 2017 .

[5]  A. Carvalho,et al.  Phosphorene analogues: Isoelectronic two-dimensional group-IV monochalcogenides with orthorhombic structure , 2015, 1504.05627.

[6]  M. Koch,et al.  Terahertz spectroscopy and imaging – Modern techniques and applications , 2011 .

[7]  Joel E Moore,et al.  Design principles for shift current photovoltaics , 2015, Nature Communications.

[8]  T. Morimoto,et al.  Large Bulk Photovoltaic Effect and Spontaneous Polarization of Single-Layer Monochalcogenides. , 2016, Physical review letters.

[9]  Charles A. Schmuttenmaer,et al.  Effect of spin-polarized electrons on terahertz emission from photoexcited GaAs , 2009 .

[10]  Junichiro Kono,et al.  Generation of terahertz radiation by optical excitation of aligned carbon nanotubes. , 2015, Nano letters.

[11]  J. Sipe,et al.  Optical rectification and shift currents in GaAs and GaP response: Below and above the band gap , 2006 .

[12]  Mark Bieler,et al.  Ultrafast shift and injection currents observed in wurtzite semiconductors via emitted terahertz radiation , 2005 .

[13]  Klaus Pierz,et al.  Shift currents from symmetry reduction and Coulomb effects in (110)-orientated GaAs/Al0.3Ga0.7As quantum wells , 2007 .

[14]  Wei Wei,et al.  Design of new photovoltaic systems based on two-dimensional group-IV monochalcogenides for high performance solar cells , 2017 .

[15]  Xiang Zhang,et al.  Effect of Oxygen Adsorbates on Terahertz Emission Properties of Various Semiconductor Surfaces Covered with Graphene , 2016 .

[16]  Wei Kang,et al.  Ferroelectricity and Phase Transitions in Monolayer Group-IV Monochalcogenides. , 2016, Physical review letters.

[17]  Klaus Pierz,et al.  Terahertz spectroscopy of shift currents resulting from asymmetric (110)-oriented GaAs/AlGaAs quantum wells , 2009 .

[18]  Gregor Mussler,et al.  Ultrafast photocurrents at the surface of the three-dimensional topological insulator Bi2Se3 , 2015, Nature Communications.

[19]  Xiao Cheng Zeng,et al.  Intrinsic Ferroelasticity and/or Multiferroicity in Two-Dimensional Phosphorene and Phosphorene Analogues. , 2016, Nano letters.