Anchoring of Diphenylphosphinyl Groups to NH2‐MIL‐53 by Post‐Synthetic Modification

A. P., A. D., and J. G. have received funding from the European Research Council under the Seventh Framework Programme of the European Union (FP/2007-2013/ERC) Grant Agreement no. 335746, CrystEng-MOF-MMM.

[1]  Yingwei Li,et al.  "Click" post-functionalization of a metal-organic framework for engineering active single-site heterogeneous Ru(iii) catalysts. , 2015, Chemical communications.

[2]  Xiao Feng,et al.  Photoinduced postsynthetic polymerization of a metal-organic framework toward a flexible stand-alone membrane. , 2015, Angewandte Chemie.

[3]  S. Wuttke,et al.  Solvent-Free and Time Efficient Postsynthetic Modification of Amino-Tagged Metal–Organic Frameworks with Carboxylic Acid Derivatives , 2014 .

[4]  M. Iglesias,et al.  Synthetic, structural, NMR and catalytic studies of phosphinic amide-phosphoryl chalcogenides (chalcogen = O, S, Se) as mixed-donor bidentate ligands in zinc chemistry. , 2014, Dalton transactions.

[5]  Bo-geng Li,et al.  A MOF-supported chromium catalyst for ethylene polymerization through post-synthetic modification , 2014 .

[6]  Wenbin Lin,et al.  Privileged phosphine-based metal-organic frameworks for broad-scope asymmetric catalysis. , 2014, Journal of the American Chemical Society.

[7]  J. Bokhoven,et al.  Synthesis and Characterization of Phosphine-Functionalized Metal–Organic Frameworks Based on MOF-5 and MIL-101 Topologies , 2014 .

[8]  Zhengbang Wang,et al.  Post-synthetic modification of metal-organic framework thin films using click chemistry: the importance of strained C-C triple bonds. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[9]  Guoqiang Yang,et al.  Insertion of arynes into arylphosphoryl amide bonds: one-step simultaneous construction of C-N and C-P bonds. , 2013, Organic letters.

[10]  F. Kapteijn,et al.  The oxamate route, a versatile post-functionalization for metal incorporation in MIL-101(Cr): Catalytic applications of Cu, Pd, and Au , 2013 .

[11]  Freek Kapteijn,et al.  Fascinating chemistry or frustrating unpredictability: observations in crystal engineering of metal–organic frameworks , 2013 .

[12]  Wei Huang,et al.  Dynamically adaptive characteristics of resonance variation for selectively enhancing electrical performance of organic semiconductors. , 2013, Angewandte Chemie.

[13]  M. Melucci,et al.  “Click” on MOFs: A Versatile Tool for the Multimodal Derivatization of N3-Decorated Metal Organic Frameworks , 2013 .

[14]  C. Adachi,et al.  A host material consisting of a phosphinic amide directly linked donor–acceptor structure for efficient blue phosphorescent organic light-emitting diodes , 2013 .

[15]  J. Szlachetko,et al.  AuI Catalysis on a Coordination Polymer: A Solid Porous Ligand with Free Phosphine Sites , 2013 .

[16]  J. V. van Bokhoven,et al.  Synthesis and reactivity of Zn-biphenyl metal-organic frameworks, introducing a diphenylphosphino functional group. , 2013, Chimia.

[17]  T. Panda,et al.  N-(2,6-Dimethylphenyl)diphenylphosphinamine chalcogenides (S, Se) and a zirconium complex possessing phosphanylamide in the coordination sphere , 2012 .

[18]  F. Jiang,et al.  Tailored construction of novel Nickel (II) and Manganese (II) coordination polymers based on tris(p-carboxylphenyl)phosphine oxide , 2012 .

[19]  Louis J. Farrugia,et al.  WinGX and ORTEP for Windows: an update , 2012 .

[20]  F. Kapteijn,et al.  Chloromethylation as a functionalisation pathway for metal–organic frameworks , 2012 .

[21]  F. Kapteijn,et al.  Adsorption and separation of light gases on an amino-functionalized metal-organic framework: an adsorption and in situ XRD study. , 2012, ChemSusChem.

[22]  Seth M Cohen,et al.  Postsynthetic methods for the functionalization of metal-organic frameworks. , 2012, Chemical reviews.

[23]  J. Chen,et al.  Syntheses, structures and ligand conformations of Cu(II), Co(II) and Ag(I) complexes containing the phosphinic amide ligands , 2012 .

[24]  Ilich A. Ibarra,et al.  A coordination polymer of (Ph3P)AuCl prepared by post-synthetic modification and its application in 1-hexene/n-hexane separation. , 2011, Chemical communications.

[25]  F. Kapteijn,et al.  Kinetic control of metal-organic framework crystallization investigated by time-resolved in situ X-ray scattering. , 2011, Angewandte Chemie.

[26]  J. Chen,et al.  Role of ligand conformation in the structural diversity of divalent complexes containing phosphinic amide ligand , 2011 .

[27]  C. Silvestru,et al.  New Organophosphorus Proligands and Amide Precursors: Crystal and Molecular Structures of Ph2P(X)NH(C6H3Pri 2-2,6) (X = O, S) and (OPPh2)(O2SMe)N(C6H3Pri 2-2,6) , 2010 .

[28]  Seth M. Cohen,et al.  Postsynthetic modification of metal-organic frameworks. , 2009, Chemical Society reviews.

[29]  Wei Huang,et al.  Comparison of the electrochemical and luminescence properties of two carbazole-based phosphine oxide Eu(III) complexes: effect of different bipolar ligand structures. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[30]  M. Balakrishna,et al.  Reactions of aminophosphines and aminobis(phosphines) with aldehydes and ketones: Coordination complexes of the resultant aminobis(alkylphosphineoxides) with cobalt, uranium, thorium and gadolinium salts: Crystal and molecular structures of Ph2P(O)CH(C6H4OH-o)N(H)Ph, Ph2P(O)CH(OH)C6H4OH-o and Ph2P(O , 2005 .

[31]  R. Scopelliti,et al.  On the reactivity of the iminodiphosphane C6H4(o-CN)N=PPh2-PPh2: Fragmentation versus isomerisation , 2004 .

[32]  Martin B. Smith,et al.  Orthometalation of Functionalized Phosphinoamines with Late Transition Metal Complexes , 1999 .

[33]  E. I. Matrosov,et al.  Tautomerism of N-acylphosphoramidic esters and N-acyl phosphinic amides , 1962 .