Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators

Abstract The fabrication and full characterization of luminescent solar concentrators (LSCs) comprising CdSe core/multishell quantum dots (QDs) is reported. TEM analysis shows that the QDs are well dispersed in the acrylic medium while maintaining a high quantum yield of 45%, resulting in highly transparent and luminescent polymer plates. A detailed optical analysis of the QD-LSCs including absorption, emission, and time-resolved fluorescence measurements is presented. Both silicon and GaAs solar cells attached to the side of the QD-LSCs are used to measure the external quantum efficiency and power conversion efficiency (2.8%) of the devices. Stability tests show only a minor decrease of 4% in photocurrent upon an equivalent of three months outdoor illumination. The optical data are used as input for a ray-trace model that is shown to describe the properties of the QD-LSCs well. The model was then used to extrapolate the properties of the small test devices to predict the power conversion efficiency of a 50×50 cm 2 module with a variety of different solar cells. The work described here gives a detailed insight into the promise of QD-based LSCs.

[1]  Roland Winston,et al.  Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators , 2010 .

[2]  Klavs F. Jensen,et al.  Full Color Emission from II–VI Semiconductor Quantum Dot–Polymer Composites , 2000 .

[3]  M. G. El-Shaarawy,et al.  A qualitative study and field performance for a fluorescent solar collector , 2002 .

[4]  N. Sommerdijk,et al.  Highly luminescent CdTe/CdSe colloidal heteronanocrystals with temperature-dependent emission color. , 2007, Journal of the American Chemical Society.

[5]  P. Liljeroth,et al.  Electronic coupling and exciton energy transfer in CdTe quantum-dot molecules. , 2006, Journal of the American Chemical Society.

[6]  J Franklin,et al.  Optimisation of a three-colour luminescent solar concentrator daylighting system , 2004 .

[7]  Renata Reisfeld,et al.  Prospects of sol-gel technology towards luminescent materials , 2001 .

[8]  A. Zewail,et al.  Photon trapping and energy transfer in multiple-dye plastic matrices: an efficient solar-energy concentrator. , 1977, Optics letters.

[9]  A. Hermann,et al.  Luminescent solar concentrators: a review , 1982 .

[10]  Alf Mews,et al.  Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals. , 2005, Journal of the American Chemical Society.

[11]  Michael G. Debije,et al.  Luminescent solar concentrators , 2010 .

[12]  Keith W. J. Barnham,et al.  Quantum-dot concentrator and thermodynamic model for the global redshift , 2000 .

[13]  A. Meyer,et al.  Luminescent Solar Concentrators--a review of recent results. , 2008, Optics express.

[14]  A. Meijerink,et al.  On the Incorporation Mechanism of Hydrophobic Quantum Dots in Silica Spheres by a Reverse Microemulsion Method , 2008 .

[15]  Nicholas J. Ekins-Daukes,et al.  A new approach to modelling quantum dot concentrators , 2003 .

[16]  Janos H. Fendler,et al.  Nanoparticles and Nanostructured Films , 1998 .

[17]  N. J. Ekins-Daukes,et al.  Quantum dot solar concentrators , 2004 .

[18]  Richard O. Claus,et al.  Transparent and flexible quantum dot–polymer composites using an ionic liquid as compatible polymerization medium , 2007 .

[19]  Loucas Tsakalakos,et al.  Nanotechnology for Photovoltaics , 2010 .

[20]  M. Yokoyama,et al.  A high-speed photocurrent multiplication device based on an organic double-layered structure , 2000 .

[21]  A. Goetzberger,et al.  Solar energy conversion with fluorescent collectors , 1977 .

[22]  X. Zhong,et al.  Synthesis, Characterization, and Spectroscopy of Type‐II Core/Shell Semiconductor Nanocrystals with ZnTe Cores , 2005 .

[23]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[24]  Peter Reiss,et al.  Highly Luminescent CdSe/ZnSe Core/Shell Nanocrystals of Low Size Dispersion , 2002 .

[25]  P. D. Swift,et al.  Maximising the light output of a Luminescent Solar Concentrator , 2004 .

[26]  P. D. Swift,et al.  Color considerations in fluorescent solar concentrator stacks. , 2003, Applied optics.

[27]  J. Lambe,et al.  Luminescent greenhouse collector for solar radiation. , 1976, Applied optics.

[28]  V. Popov,et al.  State of the art of prospects for investigations of luminescent solar concentrators , 1995 .

[29]  Ewan D. Dunlop,et al.  A luminescent solar concentrator with 7.1% power conversion efficiency , 2008 .

[30]  M. Bawendi,et al.  Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures. , 2003, Journal of the American Chemical Society.

[31]  Melinda S. Hanes,et al.  Optimized excitation energy transfer in a three-dye luminescent solar concentrator , 2007 .

[32]  A. F Mansour Outdoor testing of luminescent solar concentrators in a liquid polymer and bulk plate of PMMA , 1998 .

[33]  Renata Reisfeld,et al.  Photostable solar concentrators based on fluorescent glass films , 1994 .

[34]  Sue A. Carter,et al.  Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting , 2007 .

[35]  H. Killa,et al.  Laser dyes doped with poly(ST-Co-MMA) as fluorescent solar collectors and their field performance , 2005 .