Electrical Transport and Thermal Properties of NdBa1 –xMgxFeCo0.5Cu0.5O5 +δ (0.00 ≤ x ≤ 0.40) Solid Solutions

[1]  D. Medvedev,et al.  Layered Oxygen-Deficient Double Perovskites as Promising Cathode Materials for Solid Oxide Fuel Cells , 2021, Materials.

[2]  A. Klyndyuk,et al.  Crystal structure, thermal and electrotransport properties of NdBa1–xSrxFeCo0.5Cu0.5O5+δ (0.02 ≤ x ≤ 0.20) solid solutions , 2021, Chimica Techno Acta.

[3]  K. Cai,et al.  Evaluation of A-site Ba-deficient PrBa0.5-xSr0.5Co2O5+δ (x = 0, 0.04 and 0.08) as cathode materials for solid oxide fuel cells , 2021 .

[4]  R. Socha,et al.  Structural and electrochemical characterization of YBa(Fe,Co,Cu)2O5+δ layered perovskites as cathode materials for solid oxide fuel cells , 2021, International Journal of Hydrogen Energy.

[5]  E. Antipov,et al.  Electrode materials based on complex d-metal oxides for symmetrical solid oxide fuel cells , 2021 .

[6]  R. Liu,et al.  Exploiting rare-earth-abundant layered perovskite cathodes of LnBa0.5Sr0.5Co1.5Fe0.5O5+δ (Ln=La and Nd) for SOFCs , 2020 .

[7]  G. J. Snyder,et al.  Weighted Mobility , 2020, Advanced materials.

[8]  K. Singh,et al.  Review of perovskite-structure related cathode materials for solid oxide fuel cells , 2020 .

[9]  G. Dotelli,et al.  Structural and Electrochemical Characterization of NdBa1-xCo2-yFeyO5+δ as Cathode for Intermediate Temperature Solid Oxide Fuel Cells , 2020 .

[10]  A. Azad,et al.  Latest development of double perovskite electrode materials for solid oxide fuel cells: a review , 2019, Frontiers in Energy.

[11]  D. Tsvetkov,et al.  Double perovskites REBaCo2−xMxO6−δ (RE=La, Pr, Nd, Eu, Gd, Y; M=Fe, Mn) as energy-related materials: an overview , 2019, Pure and Applied Chemistry.

[12]  T. He,et al.  YBaCo2O5+δ-based double-perovskite cathodes for intermediate-temperature solid oxide fuel cells with simultaneously improved structural stability and thermal expansion properties , 2019, Electrochimica Acta.

[13]  T. He,et al.  Evaluation of Fe and Mn co-doped layered perovskite PrBaCo2/3Fe2/3Mn1/2O5+ as a novel cathode for intermediate-temperature solid-oxide fuel cell , 2018, Ceramics International.

[14]  Chang-jiu Li,et al.  Effect of Fe doping on the performance of suspension plasma-sprayed PrBa0.5Sr0.5Co2−xFexO5+δ cathodes for intermediate-temperature solid oxide fuel cells , 2017 .

[15]  A. Manthiram,et al.  Layered LnBaCo2O5+δ perovskite cathodes for solid oxide fuel cells: An overview and perspective , 2015 .

[16]  A. Klyndyuk,et al.  Structure, thermal expansion, and electrical properties of BiFeO3-NdMnO3 solid solutions , 2015, Inorganic Materials.

[17]  Xiuyan Li,et al.  Performance of double-perovskite YBa0.5Sr0.5Co1.4Cu0.6O5+δ as cathode material for intermediate-temperature solid oxide fuel cells , 2014 .

[18]  V. Cherepanov,et al.  Phase equilibria, crystal structure and oxygen content of intermediate phases in the Y–Ba–Co–O system , 2013 .

[19]  T. He,et al.  Performance of double-proveskite YBa0.5Sr0.5Co2O5+δ as cathode material for intermediate-temperature solid oxide fuel cells , 2011 .

[20]  V. Cherepanov,et al.  Structure, nonstoichiometry and thermal expansion of the NdBa(Co,Fe)2O5+δ layered perovskite , 2011 .

[21]  A. Klyndyuk Layered Perovskite‐Like Oxides 0112 Type. Structure, Properties, and Possible Applications , 2011 .

[22]  A. Manthiram,et al.  LnBaCo2O5+δ oxides as cathodes for intermediate-temperature solid oxide fuel cells , 2008 .

[23]  V. Kharton,et al.  Transport properties of solid oxide electrolyte ceramics , 2005 .

[24]  V. Kharton,et al.  Transport properties of solid oxide electrolyte ceramics: a brief review , 2004 .

[25]  Popov,et al.  Raman- and infrared-active phonons in YBaCuFeO5: Experiment and lattice dynamics. , 1993, Physical review. B, Condensed matter.

[26]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[27]  N. Mott,et al.  Electronic Processes In Non-Crystalline Materials , 1940 .