Pareto Subdifferential Calculus for Convex Vector Mappings and Applications to Vector Optimization
暂无分享,去创建一个
[1] Y. Sawaragi,et al. Conjugate maps and duality in multiobjective optimization , 1980 .
[2] S. Bolintinéanu,et al. Pénalisation dans l'optimisation sur l'ensemble faiblement efficient , 1997 .
[3] M. Laghdir,et al. A note on subdifferentials of convex composite functionals , 1996 .
[4] Michel Théra,et al. Subdifferential calculus for convex operators , 1981 .
[5] Lai-Jiu Lin. Optimization of Set-Valued Functions , 1994 .
[6] K. Tammer,et al. Duality results for convex vector optimization problems with linear restrictions , 1992 .
[7] J. Thierfelder,et al. Nonvertical Affine Manifolds and Separation Theorems in Product Spaces , 1991 .
[8] Jörg Thierfelder,et al. Separation theorems for sets in product spaces and equivalent assertions , 1991, Kybernetika.
[9] A. Taa,et al. Subdifferentials of multifunctions and Lagrange multipliers for multiobjective optimization , 2003 .
[10] Zhongfei Li. Benson Proper Efficiency in the Vector Optimization of Set-Valued Maps , 1998 .
[11] Mohamed Laghdir. SOME REMARKS ON SUBDIFFERENTIABILITY OF CONVEX FUNCTIONS , 2005 .
[12] Michel Valadier,et al. Sous-Différentiabilité de fonctions convexes à valeurs dans un espace vectoriel ordonné. , 1972 .
[13] B. Lemaire. Application of a Subdifferential of a Convex Composite Functional to Optimal Control in Variational Inequalities , 1985 .
[14] J. Penot,et al. Semi-continuous mappings in general topology , 1982 .
[15] Jochem Zowe,et al. Subdifferentiability of Convex Functions with Values in an Ordered Vector Space. , 1974 .
[16] Constantin Zalinescu. Hahn–Banach extension theorems for multifunctions revisited , 2008, Math. Methods Oper. Res..
[17] M. Adán,et al. Optimality Conditions for Vector Optimization Problems with Generalized Convexity in Real Linear Spaces , 2002 .
[18] C. Combari,et al. Sous-différentiels de fonctions convexes composées , 1994 .
[19] Alfredo N. Iusem,et al. Proximal Methods in Vector Optimization , 2005, SIAM J. Optim..
[20] D. Azé. Duality for the sum of convex functions in general normed spaces , 1994 .
[21] M. Laghdir,et al. On subdifferential calculus for convex functions defined on locally convex spaces , 1999 .
[22] Sorin-Mihai Grad,et al. Generalized Moreau–Rockafellar results for composed convex functions , 2009 .
[23] Sorin-Mihai Grad,et al. A new constraint qualification for the formula of the subdifferential of composed convex functions in infinite dimensional spaces , 2008 .