NumExp: Numerical epsilon expansion of hypergeometric functions
暂无分享,去创建一个
[1] Connection between Feynman integrals having different values of the space-time dimension. , 1996, Physical review. D, Particles and fields.
[2] C. G. Bollini,et al. Dimensional renorinalization : The number of dimensions as a regularizing parameter , 1972, Il Nuovo Cimento B.
[3] Joshua L. Willis,et al. Acceleration of generalized hypergeometric functions through precise remainder asymptotics , 2011, Numerical Algorithms.
[4] Analytic continuation of the generalized hypergeometric series near unit argument with emphasis on the zero-balanced series , 2001, math/0102032.
[5] Jueping Liu,et al. Analytic calculation of doubly heavy hadron spectral density in coordinate space , 2012, 1205.3026.
[6] M. Shpot. A massive Feynman integral and some reduction relations for Appell functions , 2007, 0711.2742.
[7] Bernd A. Kniehl,et al. Finding new relationships between hypergeometric functions by evaluating Feynman integrals , 2011, 1108.6019.
[8] J. A. M. Vermaseren. Harmonic sums, Mellin transforms and Integrals , 1999 .
[9] F. D. Colavecchia,et al. Numerical evaluation of Appell's F1 hypergeometric function , 2001 .
[10] E. Boos,et al. A method of calculating massive Feynman integrals , 1991 .
[11] G. Hooft,et al. Regularization and Renormalization of Gauge Fields , 1972 .
[12] Daniel Maître. Extension of HPL to complex arguments , 2012, Comput. Phys. Commun..
[13] F. Jegerlehner,et al. vs. pole masses of gauge bosons II: two-loop electroweak fermion corrections , 2002 .
[14] Hypergeometric representation of the two-loop equal mass sunrise diagram , 2006, hep-ph/0603227.
[15] A. I. Bogolubsky,et al. Fast evaluation of the hypergeometric function pFp−1(a; b; z) at the singular point z = 1 by means of the Hurwitz zeta function ζ(α, s) , 2006, Programming and Computer Software.
[16] Tobias Huber,et al. HypExp 2, Expanding hypergeometric functions about half-integer parameters , 2007, Comput. Phys. Commun..
[17] T.Gehrmann,et al. Numerical evaluation of harmonic polylogarithms , 2001, hep-ph/0107173.
[18] A new hypergeometric representation of one-loop scalar integrals in d dimensions , 2003, hep-ph/0307113.
[19] Stefan Weinzierl,et al. Expansion around half-integer values, binomial sums, and inverse binomial sums , 2004, hep-ph/0402131.
[20] Stefan Weinzierl,et al. Symbolic Expansion of Transcendental Functions , 2002, ArXiv.
[21] Wolfgang Bühring,et al. Generalized hypergeometric functions at unit argument , 1992 .
[22] J. B. Tausk. Non-planar massless two-loop Feynman diagrams with four on-shell legs , 1999 .
[23] M.Yu.Kalmykov,et al. O(\alpha \alpha_s) correction to the pole mass of the t-quark within the Standard Model , 2003, hep-ph/0308216.
[24] J. Vermaseren,et al. Harmonic Polylogarithms , 1999, hep-ph/9905237.
[25] Tobias Huber,et al. HypExp, a Mathematica package for expanding hypergeometric functions around integer-valued parameters , 2006, Comput. Phys. Commun..
[26] A. I. Davydychev. General results for massive N‐point Feynman diagrams with different masses , 1992 .
[27] A. Schmidt,et al. Negative-dimensional integration revisited , 1998 .
[28] Differential Equations for Two-Loop Four-Point Functions , 1999, hep-ph/9912329.
[29] J. B. Tausk,et al. Two-loop self-energy diagrams with different masses and the momentum expansion , 1993 .
[30] A. Floren,et al. ' " ' " ' " . " ' " " " " " ' " ' " " " " " : ' " 1 , 2001 .
[31] M. Kalmykov. Gauss hypergeometric function: reduction, ε-expansion for integer/half-integer parameters and Feynman diagrams , 2006 .
[32] Gudrun Heinrich,et al. SecDec: A general program for sector decomposition , 2010, Comput. Phys. Commun..
[33] F. Jegerlehner,et al. The O(ααs) correction to the pole mass of the t-quark within the Standard Model , 2004 .
[34] V. Moll,et al. A generalized Ramanujan Master Theorem applied to the evaluation of Feynman diagrams , 2011, 1103.0588.
[35] C. Oleari,et al. Application of the negative-dimension approach to massless scalar box integrals , 2000 .
[36] M. V. Stoitsov,et al. Fast computation of the Gauss hypergeometric function with all its parameters complex with application to the Pöschl-Teller-Ginocchio potential wave functions , 2007, Comput. Phys. Commun..
[37] W. Buehring. Partial sums of hypergeometric series of unit argument , 2003, math/0311126.
[38] B. Kniehl,et al. Mellin-Barnes representations of Feynman diagrams, linear systems of differential equations, and polynomial solutions , 2012, 1205.1697.
[39] B. Kniehl,et al. Analytic result for the one-loop scalar pentagon integral with massless propagators , 2010, 1001.3848.
[40] M.Yu. Kalmykov,et al. Massive Feynman diagrams and inverse binomial sums , 2004 .
[41] S. A. Yost,et al. Multiple (inverse) binomial sums of arbitrary weight and depth and the all-order ε-expansion of generalized hypergeometric functions with one half-integer value of parameter , 2007, 0707.3654.
[42] Riccardo D'Auria,et al. KK Spectroscopy of Type IIB Supergravity on $AdS_{5} \times T^{11}$ , 1999 .
[43] Vladimir V. Bytev,et al. HYPERDIRE, HYPERgeometric functions DIfferential REduction: MATHEMATICA-based packages for differential reduction of generalized hypergeometric functions pFp-1, F1, F2, F3, F4 , 2011, Comput. Phys. Commun..
[44] R. Alkofer,et al. Infrared Behavior of Three-Point Functions in Landau Gauge Yang-Mills Theory , 2008, 0812.4451.
[45] Victor H. Moll,et al. Definite integrals by the method of brackets. Part 1☆ , 2008, Adv. Appl. Math..
[46] Peter Uwer,et al. -XSummer- Transcendental functions and symbolic summation in Form , 2006, Comput. Phys. Commun..
[47] Wolfgang Büring. An analytic continuation of the hypergeometric series , 1987 .
[48] Claude Duhr,et al. CHAPLIN - Complex Harmonic Polylogarithms in Fortran , 2011, Comput. Phys. Commun..
[49] Alessandro Vicini,et al. On the generalized harmonic polylogarithms of one complex variable , 2010, Comput. Phys. Commun..
[50] A. Kotikov. Differential equations method. New technique for massive Feynman diagram calculation , 1991 .
[51] S. Weinzierl. Subtraction terms at NNLO , 2003, hep-ph/0302180.
[52] M.Yu. Kalmykov,et al. New results for the ε-expansion of certain one-, two- and three-loop Feynman diagrams , 2000 .
[53] Stefan Weinzierl,et al. Nested sums, expansion of transcendental functions and multiscale multiloop integrals , 2002 .
[54] M. Yu. Kalmykov,et al. All order epsilon-expansion of Gauss hypergeometric functions with integer and half/integer values of parameters , 2006, ArXiv.
[55] C. Oleari,et al. Scalar one-loop integrals using the negative-dimension approach , 1999, hep-ph/9907494.
[56] Stefan Weinzierl,et al. Numerical evaluation of multiple polylogarithms , 2005, Comput. Phys. Commun..
[57] Gerard 't Hooft,et al. Scalar One Loop Integrals , 1979 .
[58] Ming-qiu Huang,et al. $\{Q\bar{q}\}\{\bar{Q}^{(')}q\}$ molecular states , 2009, 0906.0090.
[59] Daniel Maître. HPL, a Mathematica implementation of the harmonic polylogarithms , 2006, Comput. Phys. Commun..
[60] B. Fornberg. Generation of finite difference formulas on arbitrarily spaced grids , 1988 .
[61] R. N. Lee,et al. Space-time dimensionality D as complex variable: Calculating loop integrals using dimensional recurrence relation and analytical properties with respect to D , 2009, 0911.0252.
[62] F. D. Colavecchia,et al. f1: a code to compute Appell's F1 hypergeometric function , 2004 .
[63] Bernd A. Kniehl,et al. Towards all-order Laurent expansion of generalised hypergeometric functions about rational values of parameters , 2008, 0807.0567.
[64] V. A. Smirnov. Analytical result for dimensionally regularized massless on shell double box , 1999 .
[65] C. Duhr,et al. The one-loop pentagon to higher orders in ϵ , 2009, 0905.0097.
[66] S. Yost,et al. All order "-expansion of Gauss hypergeometric functions with integer and half/integer values of parameters ¤ , 2007 .
[67] Optimized negative dimensional integration method (NDIM) and multiloop Feynman diagram calculation , 2007, hep-th/0702218.
[68] Armin Straub,et al. The method of brackets. Part 2: examples and applications , 2010, 1004.2062.
[69] S. Yost,et al. On the all-order "-expansion of generalized hypergeometric functions with integer values of parameters , 2007, 0708.0803.