NumExp: Numerical epsilon expansion of hypergeometric functions

Abstract It is demonstrated that the well-regularized hypergeometric functions can be evaluated directly and numerically. The package NumExp is presented for expanding hypergeometric functions and/or other transcendental functions in a small regularization parameter. The hypergeometric function is expressed as a Laurent series in the regularization parameter and the coefficients are evaluated numerically by using the multi-precision finite difference method. This elaborate expansion method works for a wide variety of hypergeometric functions, which are needed in the context of dimensional regularization for loop integrals. The divergent and finite parts can be extracted from the final result easily and simultaneously. In addition, there is almost no restriction on the parameters of hypergeometric functions. Program summary Program title: NumExp Catalogue identifier:  AEPE_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEPE_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1682 No. of bytes in distributed program, including test data, etc.: 18431 Distribution format: tar.gz Programming language: Mathematica and/or Python. Computer: Any computer where Mathematica or Python is running. Operating system: Linux, Windows. Classification: 4.4, 5, 11.1. External routines: mpmath library (for Python) Nature of problem: Expansion of hypergeometric functions and/or other transcendental functions in a small parameter e . These expansions are needed in the context of dimensional regularization for loop integrals. Solution method: The hypergeometric function is expressed as a Laurent series in the regularization parameter e , where the coefficients are evaluated numerically by the multi-precision finite difference method. Restrictions: The calculation may be inefficient if the arguments of hypergeometric functions are close to the convergent boundaries. Running time: Generally it is less than a few seconds, depending on the complexity of the problem.

[1]  Connection between Feynman integrals having different values of the space-time dimension. , 1996, Physical review. D, Particles and fields.

[2]  C. G. Bollini,et al.  Dimensional renorinalization : The number of dimensions as a regularizing parameter , 1972, Il Nuovo Cimento B.

[3]  Joshua L. Willis,et al.  Acceleration of generalized hypergeometric functions through precise remainder asymptotics , 2011, Numerical Algorithms.

[4]  Analytic continuation of the generalized hypergeometric series near unit argument with emphasis on the zero-balanced series , 2001, math/0102032.

[5]  Jueping Liu,et al.  Analytic calculation of doubly heavy hadron spectral density in coordinate space , 2012, 1205.3026.

[6]  M. Shpot A massive Feynman integral and some reduction relations for Appell functions , 2007, 0711.2742.

[7]  Bernd A. Kniehl,et al.  Finding new relationships between hypergeometric functions by evaluating Feynman integrals , 2011, 1108.6019.

[8]  J. A. M. Vermaseren Harmonic sums, Mellin transforms and Integrals , 1999 .

[9]  F. D. Colavecchia,et al.  Numerical evaluation of Appell's F1 hypergeometric function , 2001 .

[10]  E. Boos,et al.  A method of calculating massive Feynman integrals , 1991 .

[11]  G. Hooft,et al.  Regularization and Renormalization of Gauge Fields , 1972 .

[12]  Daniel Maître Extension of HPL to complex arguments , 2012, Comput. Phys. Commun..

[13]  F. Jegerlehner,et al.  vs. pole masses of gauge bosons II: two-loop electroweak fermion corrections , 2002 .

[14]  Hypergeometric representation of the two-loop equal mass sunrise diagram , 2006, hep-ph/0603227.

[15]  A. I. Bogolubsky,et al.  Fast evaluation of the hypergeometric function pFp−1(a; b; z) at the singular point z = 1 by means of the Hurwitz zeta function ζ(α, s) , 2006, Programming and Computer Software.

[16]  Tobias Huber,et al.  HypExp 2, Expanding hypergeometric functions about half-integer parameters , 2007, Comput. Phys. Commun..

[17]  T.Gehrmann,et al.  Numerical evaluation of harmonic polylogarithms , 2001, hep-ph/0107173.

[18]  A new hypergeometric representation of one-loop scalar integrals in d dimensions , 2003, hep-ph/0307113.

[19]  Stefan Weinzierl,et al.  Expansion around half-integer values, binomial sums, and inverse binomial sums , 2004, hep-ph/0402131.

[20]  Stefan Weinzierl,et al.  Symbolic Expansion of Transcendental Functions , 2002, ArXiv.

[21]  Wolfgang Bühring,et al.  Generalized hypergeometric functions at unit argument , 1992 .

[22]  J. B. Tausk Non-planar massless two-loop Feynman diagrams with four on-shell legs , 1999 .

[23]  M.Yu.Kalmykov,et al.  O(\alpha \alpha_s) correction to the pole mass of the t-quark within the Standard Model , 2003, hep-ph/0308216.

[24]  J. Vermaseren,et al.  Harmonic Polylogarithms , 1999, hep-ph/9905237.

[25]  Tobias Huber,et al.  HypExp, a Mathematica package for expanding hypergeometric functions around integer-valued parameters , 2006, Comput. Phys. Commun..

[26]  A. I. Davydychev General results for massive N‐point Feynman diagrams with different masses , 1992 .

[27]  A. Schmidt,et al.  Negative-dimensional integration revisited , 1998 .

[28]  Differential Equations for Two-Loop Four-Point Functions , 1999, hep-ph/9912329.

[29]  J. B. Tausk,et al.  Two-loop self-energy diagrams with different masses and the momentum expansion , 1993 .

[30]  A. Floren,et al.  ' " ' " ' " . " ' " " " " " ' " ' " " " " " : ' " 1 , 2001 .

[31]  M. Kalmykov Gauss hypergeometric function: reduction, ε-expansion for integer/half-integer parameters and Feynman diagrams , 2006 .

[32]  Gudrun Heinrich,et al.  SecDec: A general program for sector decomposition , 2010, Comput. Phys. Commun..

[33]  F. Jegerlehner,et al.  The O(ααs) correction to the pole mass of the t-quark within the Standard Model , 2004 .

[34]  V. Moll,et al.  A generalized Ramanujan Master Theorem applied to the evaluation of Feynman diagrams , 2011, 1103.0588.

[35]  C. Oleari,et al.  Application of the negative-dimension approach to massless scalar box integrals , 2000 .

[36]  M. V. Stoitsov,et al.  Fast computation of the Gauss hypergeometric function with all its parameters complex with application to the Pöschl-Teller-Ginocchio potential wave functions , 2007, Comput. Phys. Commun..

[37]  W. Buehring Partial sums of hypergeometric series of unit argument , 2003, math/0311126.

[38]  B. Kniehl,et al.  Mellin-Barnes representations of Feynman diagrams, linear systems of differential equations, and polynomial solutions , 2012, 1205.1697.

[39]  B. Kniehl,et al.  Analytic result for the one-loop scalar pentagon integral with massless propagators , 2010, 1001.3848.

[40]  M.Yu. Kalmykov,et al.  Massive Feynman diagrams and inverse binomial sums , 2004 .

[41]  S. A. Yost,et al.  Multiple (inverse) binomial sums of arbitrary weight and depth and the all-order ε-expansion of generalized hypergeometric functions with one half-integer value of parameter , 2007, 0707.3654.

[42]  Riccardo D'Auria,et al.  KK Spectroscopy of Type IIB Supergravity on $AdS_{5} \times T^{11}$ , 1999 .

[43]  Vladimir V. Bytev,et al.  HYPERDIRE, HYPERgeometric functions DIfferential REduction: MATHEMATICA-based packages for differential reduction of generalized hypergeometric functions pFp-1, F1, F2, F3, F4 , 2011, Comput. Phys. Commun..

[44]  R. Alkofer,et al.  Infrared Behavior of Three-Point Functions in Landau Gauge Yang-Mills Theory , 2008, 0812.4451.

[45]  Victor H. Moll,et al.  Definite integrals by the method of brackets. Part 1☆ , 2008, Adv. Appl. Math..

[46]  Peter Uwer,et al.  -XSummer- Transcendental functions and symbolic summation in Form , 2006, Comput. Phys. Commun..

[47]  Wolfgang Büring An analytic continuation of the hypergeometric series , 1987 .

[48]  Claude Duhr,et al.  CHAPLIN - Complex Harmonic Polylogarithms in Fortran , 2011, Comput. Phys. Commun..

[49]  Alessandro Vicini,et al.  On the generalized harmonic polylogarithms of one complex variable , 2010, Comput. Phys. Commun..

[50]  A. Kotikov Differential equations method. New technique for massive Feynman diagram calculation , 1991 .

[51]  S. Weinzierl Subtraction terms at NNLO , 2003, hep-ph/0302180.

[52]  M.Yu. Kalmykov,et al.  New results for the ε-expansion of certain one-, two- and three-loop Feynman diagrams , 2000 .

[53]  Stefan Weinzierl,et al.  Nested sums, expansion of transcendental functions and multiscale multiloop integrals , 2002 .

[54]  M. Yu. Kalmykov,et al.  All order epsilon-expansion of Gauss hypergeometric functions with integer and half/integer values of parameters , 2006, ArXiv.

[55]  C. Oleari,et al.  Scalar one-loop integrals using the negative-dimension approach , 1999, hep-ph/9907494.

[56]  Stefan Weinzierl,et al.  Numerical evaluation of multiple polylogarithms , 2005, Comput. Phys. Commun..

[57]  Gerard 't Hooft,et al.  Scalar One Loop Integrals , 1979 .

[58]  Ming-qiu Huang,et al.  $\{Q\bar{q}\}\{\bar{Q}^{(')}q\}$ molecular states , 2009, 0906.0090.

[59]  Daniel Maître HPL, a Mathematica implementation of the harmonic polylogarithms , 2006, Comput. Phys. Commun..

[60]  B. Fornberg Generation of finite difference formulas on arbitrarily spaced grids , 1988 .

[61]  R. N. Lee,et al.  Space-time dimensionality D as complex variable: Calculating loop integrals using dimensional recurrence relation and analytical properties with respect to D , 2009, 0911.0252.

[62]  F. D. Colavecchia,et al.  f1: a code to compute Appell's F1 hypergeometric function , 2004 .

[63]  Bernd A. Kniehl,et al.  Towards all-order Laurent expansion of generalised hypergeometric functions about rational values of parameters , 2008, 0807.0567.

[64]  V. A. Smirnov Analytical result for dimensionally regularized massless on shell double box , 1999 .

[65]  C. Duhr,et al.  The one-loop pentagon to higher orders in ϵ , 2009, 0905.0097.

[66]  S. Yost,et al.  All order "-expansion of Gauss hypergeometric functions with integer and half/integer values of parameters ¤ , 2007 .

[67]  Optimized negative dimensional integration method (NDIM) and multiloop Feynman diagram calculation , 2007, hep-th/0702218.

[68]  Armin Straub,et al.  The method of brackets. Part 2: examples and applications , 2010, 1004.2062.

[69]  S. Yost,et al.  On the all-order "-expansion of generalized hypergeometric functions with integer values of parameters , 2007, 0708.0803.