Growing 1D and Quasi-2D Unstable Manifolds of Maps
暂无分享,去创建一个
[1] James A. Yorke,et al. CALCULATING STABLE AND UNSTABLE MANIFOLDS , 1991 .
[2] Dana D. Hobson,et al. An efficient method for computing invariant manifolds of planar maps , 1993 .
[3] G. Vegter,et al. Algorithms for computing normally hyperbolic invariant manifolds , 1997 .
[4] John Guckenheimer,et al. Dstool: Computer assisted exploration of dynamical systems , 1992 .
[5] H. Aref. Stirring by chaotic advection , 1984, Journal of Fluid Mechanics.
[6] James A. Yorke,et al. A procedure for finding numerical trajectories on chaotic saddles , 1989 .
[7] J. Yorke,et al. Crises, sudden changes in chaotic attractors, and transient chaos , 1983 .
[8] Hinke M. Osinga,et al. Computing invariant manifolds , 1996 .
[9] Bernd Krauskopf,et al. Globalizing Two-Dimensional Unstable Manifolds of Maps , 1998 .
[10] O. Junge,et al. Exploring invariant sets and invariant measures. , 1997, Chaos.
[11] Lawrence Sirovich,et al. A simple model of chaotic advection and scattering. , 1995, Chaos.
[12] R. Fateman,et al. A System for Doing Mathematics by Computer. , 1992 .
[13] Juergen Kurths,et al. Multiband strange nonchaotic attractors in quasiperiodically forced systems , 1996 .
[14] Stephen Wiggins,et al. Chaotic transport in dynamical systems , 1991 .
[15] K. Ikeda,et al. Optical Turbulence: Chaotic Behavior of Transmitted Light from a Ring Cavity , 1980 .
[16] Michael Dellnitz,et al. The Computation of Unstable Manifolds Using Subdivision and Continuation , 1996 .
[17] Julio M. Ottino,et al. Analysis of chaotic mixing in two model systems , 1986, Journal of Fluid Mechanics.
[18] Peter C. Jurs,et al. Mathematica , 2019, J. Chem. Inf. Comput. Sci..
[19] J. Palis,et al. Geometric theory of dynamical systems , 1982 .
[20] Leon O. Chua,et al. Practical Numerical Algorithms for Chaotic Systems , 1989 .
[21] Roger L. Kraft. Hyperbolicity & Sensitive Chaotic Dynamics at Homoclinic Bifurcations (J. Palis and F. Taken) , 1996, SIAM Rev..
[22] J. Yorke,et al. Strange attractors that are not chaotic , 1984 .
[23] M. Hénon,et al. A two-dimensional mapping with a strange attractor , 1976 .
[24] P. Holmes,et al. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.
[25] G. Vegter,et al. On the computation of invariant manifolds of fixed points , 1995 .
[26] Floris Takens,et al. Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations : fractal dimensions and infinitely many attractors , 1993 .
[27] Bernd Krauskopf,et al. Investigating torus bifurcations in the forced Van der Pol oscillator , 2000 .
[28] Christopher K. R. T. Jones,et al. Global dynamical behavior of the optical field in a ring cavity , 1985 .
[29] Bernd Krauskopf,et al. Growing Unstable Manifolds of Planar Maps , 1997 .
[30] Gert Vegter,et al. On the computation of normally hyperbolic invariant manifolds , 1996 .
[31] M. Hénon. A two-dimensional mapping with a strange attractor , 1976 .
[32] M. Dellnitz,et al. A subdivision algorithm for the computation of unstable manifolds and global attractors , 1997 .