A Bayesian parameter estimation approach to pulsar time-of-arrival analysis
暂无分享,去创建一个
[1] M. Mclaughlin. The North American Nanohertz Observatory for Gravitational Waves , 2013 .
[2] D. Stinebring,et al. Gravitational Wave Astronomy Using Pulsars: Massive Black Hole Mergers & the Early Universe , 2009, 0902.2968.
[3] Robert B. Gramacy,et al. Importance tempering , 2007, Stat. Comput..
[4] D. Stinebring,et al. The International Pulsar Timing Array project: using pulsars as a gravitational wave detector , 2009, 0911.5206.
[5] Miquel Trias,et al. Delayed rejection schemes for efficient Markov-Chain Monte-Carlo sampling of multimodal distributions , 2009, 0904.2207.
[6] G. Hobbs. Pulsar timing array projects , 2009, Proceedings of the International Astronomical Union.
[7] Y. Levin,et al. On measuring the gravitational-wave background using Pulsar Timing Arrays , 2008, 0809.0791.
[8] L. Price,et al. Optimal strategies for gravitational wave stochastic background searches in pulsar timing data , 2008, 0809.0701.
[9] Renate Meyer,et al. Metropolis–Hastings algorithms with adaptive proposals , 2008, Stat. Comput..
[10] D. Sonnenwald. Scientific collaboration , 2007, Annu. Rev. Inf. Sci. Technol..
[11] Andrew M. Wallace,et al. Bayesian Analysis of Lidar Signals with Multiple Returns , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[12] F. Feroz,et al. Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses , 2007, 0704.3704.
[13] M. Popov,et al. Probing cosmic plasma with giant radio pulses , 2007, astro-ph/0703046.
[14] George Hobbs,et al. TEMPO2: a New Pulsar Timing Package , 2006 .
[15] A. Lyne,et al. Pulsar Timing Noise , 2006 .
[16] A. A. Ershov,et al. Detection of giant radio pulses from the pulsar PSR B0656+14 , 2006, astro-ph/0607323.
[17] R. Manchester,et al. TEMPO2, a new pulsar-timing package - I. An overview , 2006, astro-ph/0603381.
[18] D. Parkinson,et al. A Nested Sampling Algorithm for Cosmological Model Selection , 2005, astro-ph/0508461.
[19] W. Gilks. Markov Chain Monte Carlo , 2005 .
[20] L. Wen,et al. Constraining the Properties of Supermassive Black Hole Systems Using Pulsar Timing: Application to 3C 66B , 2004 .
[21] L. Wen,et al. Constraining the Properties of the Proposed Super-Massive Black Hole System in 3C66B: Limits from Pulsar Timing , 2003, astro-ph/0310276.
[22] M. Kramer,et al. High-resolution single-pulse studies of the Vela pulsar , 2002 .
[23] U. Sydney,et al. High-resolution single-pulse studies of the Vela Pulsar , 2002, astro-ph/0203126.
[24] A. Mira. On Metropolis-Hastings algorithms with delayed rejection , 2001 .
[25] A. Kinkhabwala,et al. Multifrequency Observations of Giant Radio Pulses from the Millisecond Pulsar B1937+21 , 1999, astro-ph/9910134.
[26] J. A. Shrauner,et al. Giant Radio Pulses from a Millisecond Pulsar , 1996 .
[27] John Skilling,et al. Data analysis : a Bayesian tutorial , 1996 .
[28] Peter Green,et al. Markov chain Monte Carlo in Practice , 1996 .
[29] David B. Dunson,et al. Bayesian Data Analysis , 2010 .
[30] G. Parisi,et al. Simulated tempering: a new Monte Carlo scheme , 1992, hep-lat/9205018.
[31] Joshua R. Smith,et al. LIGO: the Laser Interferometer Gravitational-Wave Observatory , 1992, Science.
[32] R. Hellings,et al. Upper limits on the isotropic gravitational radiation background from pulsar timing analysis , 1983 .
[33] S. Detweiler. Pulsar timing measurements and the search for gravitational waves , 1979 .