A Bayesian parameter estimation approach to pulsar time-of-arrival analysis

The increasing sensitivities of pulsar timing arrays to ultra-low frequency (nHz) gravitational waves promise to achieve direct gravitational wave (GW) detection within the next 5–10 years. While there are many parallel efforts being made in the improvement of telescope sensitivity, the detection of stable millisecond pulsars and the improvement of the timing software, there are reasons to believe that the methods used to accurately determine the time-of-arrival (TOA) of pulses from radio pulsars can be improved upon. More specifically, the determination of the uncertainties on these TOAs, which strongly affect the ability to detect GWs through pulsar timing, may be unreliable. We propose two Bayesian methods for the generation of pulsar TOAs starting from pulsar ‘search-mode’ data and pre-folded data. These methods are applied to simulated toy-model examples and in this initial work we focus on the issue of uncertainties in the folding period. The final results of our analysis are expressed in the form of posterior probability distributions on the signal parameters (including the TOA) from a single observation.

[1]  M. Mclaughlin The North American Nanohertz Observatory for Gravitational Waves , 2013 .

[2]  D. Stinebring,et al.  Gravitational Wave Astronomy Using Pulsars: Massive Black Hole Mergers & the Early Universe , 2009, 0902.2968.

[3]  Robert B. Gramacy,et al.  Importance tempering , 2007, Stat. Comput..

[4]  D. Stinebring,et al.  The International Pulsar Timing Array project: using pulsars as a gravitational wave detector , 2009, 0911.5206.

[5]  Miquel Trias,et al.  Delayed rejection schemes for efficient Markov-Chain Monte-Carlo sampling of multimodal distributions , 2009, 0904.2207.

[6]  G. Hobbs Pulsar timing array projects , 2009, Proceedings of the International Astronomical Union.

[7]  Y. Levin,et al.  On measuring the gravitational-wave background using Pulsar Timing Arrays , 2008, 0809.0791.

[8]  L. Price,et al.  Optimal strategies for gravitational wave stochastic background searches in pulsar timing data , 2008, 0809.0701.

[9]  Renate Meyer,et al.  Metropolis–Hastings algorithms with adaptive proposals , 2008, Stat. Comput..

[10]  D. Sonnenwald Scientific collaboration , 2007, Annu. Rev. Inf. Sci. Technol..

[11]  Andrew M. Wallace,et al.  Bayesian Analysis of Lidar Signals with Multiple Returns , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  F. Feroz,et al.  Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses , 2007, 0704.3704.

[13]  M. Popov,et al.  Probing cosmic plasma with giant radio pulses , 2007, astro-ph/0703046.

[14]  George Hobbs,et al.  TEMPO2: a New Pulsar Timing Package , 2006 .

[15]  A. Lyne,et al.  Pulsar Timing Noise , 2006 .

[16]  A. A. Ershov,et al.  Detection of giant radio pulses from the pulsar PSR B0656+14 , 2006, astro-ph/0607323.

[17]  R. Manchester,et al.  TEMPO2, a new pulsar-timing package - I. An overview , 2006, astro-ph/0603381.

[18]  D. Parkinson,et al.  A Nested Sampling Algorithm for Cosmological Model Selection , 2005, astro-ph/0508461.

[19]  W. Gilks Markov Chain Monte Carlo , 2005 .

[20]  L. Wen,et al.  Constraining the Properties of Supermassive Black Hole Systems Using Pulsar Timing: Application to 3C 66B , 2004 .

[21]  L. Wen,et al.  Constraining the Properties of the Proposed Super-Massive Black Hole System in 3C66B: Limits from Pulsar Timing , 2003, astro-ph/0310276.

[22]  M. Kramer,et al.  High-resolution single-pulse studies of the Vela pulsar , 2002 .

[23]  U. Sydney,et al.  High-resolution single-pulse studies of the Vela Pulsar , 2002, astro-ph/0203126.

[24]  A. Mira On Metropolis-Hastings algorithms with delayed rejection , 2001 .

[25]  A. Kinkhabwala,et al.  Multifrequency Observations of Giant Radio Pulses from the Millisecond Pulsar B1937+21 , 1999, astro-ph/9910134.

[26]  J. A. Shrauner,et al.  Giant Radio Pulses from a Millisecond Pulsar , 1996 .

[27]  John Skilling,et al.  Data analysis : a Bayesian tutorial , 1996 .

[28]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[29]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[30]  G. Parisi,et al.  Simulated tempering: a new Monte Carlo scheme , 1992, hep-lat/9205018.

[31]  Joshua R. Smith,et al.  LIGO: the Laser Interferometer Gravitational-Wave Observatory , 1992, Science.

[32]  R. Hellings,et al.  Upper limits on the isotropic gravitational radiation background from pulsar timing analysis , 1983 .

[33]  S. Detweiler Pulsar timing measurements and the search for gravitational waves , 1979 .