MOLECULAR IMAGING WITH POSITRON EMISSION TOMOGRAPHY

▪ Abstract Positron emission tomography (PET) is a molecular imaging technology for examining the molecular basis of normal biological functions of cells and their failure in disease. PET's molecular diagnostics of the biology of disease are often more accurate than lesion-based diagnosis by structural imaging techniques such as x-ray films, x-ray computed tomography, and magnetic resonance imaging. PET provides the means to examine the pharmacokinetics and biodistribution of drugs in living mammals, from the mouse to the human patient. PET includes three major technical components: the PET scanner, cyclotron-based electronic generators for producing labeled probes, and biological assays using tracer principles. This chapter examines these components, provides a brief history of the development of PET technologies, and discusses applications of PET.

[1]  R. Q. Edwards,et al.  Image Separation Radioisotope Scanning , 1963 .

[2]  A. Cormack Representation of a Function by Its Line Integrals, with Some Radiological Applications , 1963 .

[3]  R. Q. Edwards,et al.  CYLINDRICAL AND SECTION RADIOISOTOPE SCANNING OF THE LIVER AND BRAIN. , 1964, Radiology.

[4]  Gordon L. Brownell,et al.  A Multi-Crystal Positron Camera , 1972 .

[5]  M. P. Buchin,et al.  Performance Parameters of a Positron Imaging Camera , 1976, IEEE Transactions on Nuclear Science.

[6]  J. K. Chan,et al.  Circular Ring Transverse Axial Positron Camera for 3-Dimensional Reconstruction of Radionuclides Distribution , 1976, IEEE Transactions on Nuclear Science.

[7]  G. Weber Enzymology of cancer cells (first of two parts). , 1977, The New England journal of medicine.

[8]  H. G. Jackson,et al.  High Resolution Computed Tomography of Positron Emitters , 1976, IEEE Transactions on Nuclear Science.

[9]  M. Reivich,et al.  THE [14C]DEOXYGLUCOSE METHOD FOR THE MEASUREMENT OF LOCAL CEREBRAL GLUCOSE UTILIZATION: THEORY, PROCEDURE, AND NORMAL VALUES IN THE CONSCIOUS AND ANESTHETIZED ALBINO RAT 1 , 1977, Journal of neurochemistry.

[10]  G. Weber Enzymology of cancer cells (second of two parts). , 1977, The New England journal of medicine.

[11]  M. Reivich,et al.  Labeled 2-deoxy-D-glucose analogs. 18F-labeled 2-deoxy-2-fluoro-D-glucose, 2-deoxy-2-fluoro-D-mannose and 14C-2-deoxy-2-fluoro-D-glucose , 1978 .

[12]  A. Alavi,et al.  The [18F]Fluorodeoxyglucose Method for the Measurement of Local Cerebral Glucose Utilization in Mane , 1979, Circulation research.

[13]  E. Hoffman,et al.  Tomographic measurement of local cerebral glucose metabolic rate in humans with (F‐18)2‐fluoro‐2‐deoxy‐D‐glucose: Validation of method , 1979, Annals of neurology.

[14]  Ronald H. Huesman,et al.  The Donner 280-Crystal High Resolution Positron Tomograph , 1979, IEEE Transactions on Nuclear Science.

[15]  E. Hoffman,et al.  Noninvasive determination of local cerebral metabolic rate of glucose in man. , 1980, The American journal of physiology.

[16]  D Christman,et al.  Metabolic mapping of functional activity in human subjects with the [18F]fluorodeoxyglucose technique. , 1981, Science.

[17]  S. Derenzo Monte Carlo Calculations of the Detection Efficiency of Arrays of Nai(Tl), Bgo, Csf, Ge, and Plastic Detectors for 511 Kev Photons , 1981, IEEE Transactions on Nuclear Science.

[18]  Meredith C. Phelps,et al.  Metabolic mapping of the brain's response to visual stimulation: studies in humans , 1981 .

[19]  A. Lehninger Principles of Biochemistry , 1984 .

[20]  J. Mazziotta,et al.  Positron emission tomography and autoradiography: Principles and applications for the brain and heart , 1985 .

[21]  R. Nutt,et al.  A Multicrystal Two Dimensional BGO Detector System for Positron Emission Tomography , 1986, IEEE Transactions on Nuclear Science.

[22]  J. Allman,et al.  Mapping human visual cortex with positron emission tomography , 1986, Nature.

[23]  J. Mazziotta,et al.  Reduced cerebral glucose metabolism in asymptomatic subjects at risk for Huntington's disease. , 1987, The New England journal of medicine.

[24]  J. Mazziotta,et al.  3-(2'-[18F]fluoroethyl)spiperone, a potent dopamine antagonist: synthesis, structural analysis and in-vivo utilization in humans. , 1990, International journal of radiation applications and instrumentation. Part A, Applied radiation and isotopes.

[25]  R. Huesman,et al.  Instrumentation for positron emission tomography , 1991, Medical progress through technology.

[26]  Richard S. J. Frackowiak,et al.  The use of positron emission tomography in the clinical assessment of dementia. , 1992, Seminars in nuclear medicine.

[27]  Ravi S. Menon,et al.  Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[28]  H. Malcolm Hudson,et al.  Accelerated image reconstruction using ordered subsets of projection data , 1994, IEEE Trans. Medical Imaging.

[29]  J C Mazziotta,et al.  Apolipoprotein E type 4 allele and cerebral glucose metabolism in relatives at risk for familial Alzheimer disease. , 1995, JAMA.

[30]  G. Hounsfield Computerized transverse axial scanning (tomography): Part I. Description of system. 1973. , 1973, The British journal of radiology.

[31]  Magnus Dahlbom,et al.  Investigation of LSO crystals for high spatial resolution positron emission tomography , 1996 .

[32]  S. Thibodeau,et al.  Preclinical evidence of Alzheimer's disease in persons homozygous for the epsilon 4 allele for apolipoprotein E. , 1996, The New England journal of medicine.

[33]  Simon R. Cherry,et al.  Development of a PET detector system compatible with MRI/NMR systems , 1997 .

[34]  P. Conti,et al.  Synthesis and preliminary evaluation of 9-(4-[18F]-fluoro-3-hydroxymethylbutyl)guanine ([18F]FHBG): a new potential imaging agent for viral infection and gene therapy using PET. , 1998, Nuclear medicine and biology.

[35]  Simon R. Cherry,et al.  The Changing Design of Positron Imaging Systems. , 1998, Clinical positron imaging : official journal of the Institute for Clinical P.E.T.

[36]  R. Leahy,et al.  High-resolution 3D Bayesian image reconstruction using the microPET small-animal scanner. , 1998, Physics in medicine and biology.

[37]  H R Schelbert,et al.  The usefulness of positron emission tomography. , 1998, Current problems in cardiology.

[38]  E. Hoffman,et al.  Calculation of positron range and its effect on the fundamental limit of positron emission tomography system spatial resolution. , 1999, Physics in medicine and biology.

[39]  S. Cherry,et al.  Repetitive, non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals , 1999, Gene Therapy.

[40]  S. Cherry,et al.  Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[41]  S. Gambhir,et al.  Imaging gene expression: Principles and assays , 1999, Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology.

[42]  Michael E. Phelps,et al.  Electronic Generators for the Production of Positron-Emitter Labeled Radiopharmaceuticals. Where Would PET Be Without Them? , 1999, Clinical positron imaging : official journal of the Institute for Clinical P.E.T.

[43]  M E Phelps,et al.  Positron emission tomography provides molecular imaging of biological processes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[44]  William Jagust,et al.  Convection-Enhanced Delivery of AAV Vector in Parkinsonian Monkeys; In Vivo Detection of Gene Expression and Restoration of Dopaminergic Function Using Pro-drug Approach , 2000, Experimental Neurology.

[45]  Simon R. Cherry,et al.  Comparison of 3-D maximum a posteriori and filtered backprojection algorithms for high-resolution animal imaging with microPET , 2000, IEEE Transactions on Medical Imaging.

[46]  S R Cherry,et al.  Detector development for microPET II: a 1 microl resolution PET scanner for small animal imaging. , 2001, Physics in medicine and biology.

[47]  G. Alexander,et al.  Positron emission tomography in evaluation of dementia: Regional brain metabolism and long-term outcome. , 2001, JAMA.

[48]  Ronald Nutt,et al.  The History of Positron Emission Tomography , 2002 .