Kriging for Hilbert-space valued random fields: The operatorial point of view

We develop a comprehensive framework for linear spatial prediction in Hilbert spaces. We explore the problem of Best Linear Unbiased (BLU) prediction in Hilbert spaces through an original point of view, based on a new Operatorial definition of Kriging. We ground our developments on the theory of Gaussian processes in function spaces and on the associated notion of measurable linear transformation. We prove that our new setting allows (a) to derive an explicit solution to the problem of Operatorial Ordinary Kriging, and (b) to establish the relation of our novel predictor with the key concept of conditional expectation of a Gaussian measure. Our new theory is posed as a unifying theory for Kriging, which is shown to include the Kriging predictors proposed in the literature on Functional Data through the notion of finite-dimensional approximations. Our original viewpoint to Kriging offers new relevant insights for the geostatistical analysis of either finite- or infinite-dimensional georeferenced dataset.

[1]  Nicola Parolini,et al.  Using Gambling Simulators to Foster Awareness About Gambling Risks: A Focus on Emotions , 2015 .

[2]  Xiaozhe Hu,et al.  Multigrid algorithms for $hp$-version Interior Penalty Discontinuous Galerkin methods on polygonal and polyhedral meshes , 2014 .

[3]  J. Zabczyk,et al.  Stochastic Equations in Infinite Dimensions , 2008 .

[4]  MenafoglioAlessandra,et al.  Kriging for Hilbert-space valued random fields , 2016 .

[5]  Z. Q. John Lu,et al.  Nonparametric Functional Data Analysis: Theory And Practice , 2007, Technometrics.

[6]  Pedro Delicado,et al.  Functional k-sample problem when data are density functions , 2007, Comput. Stat..

[7]  Pedro Delicado,et al.  Dimensionality reduction when data are density functions , 2011, Comput. Stat. Data Anal..

[8]  Piotr Kokoszka,et al.  Inference for Functional Data with Applications , 2012 .

[9]  J Steve Marron,et al.  Overview of object oriented data analysis , 2014, Biometrical journal. Biometrische Zeitschrift.

[10]  Ramon Giraldo Henao,et al.  Geostatistical analysis of functional data , 2009 .

[11]  V. Pawlowsky-Glahn,et al.  Hilbert Space of Probability Density Functions Based on Aitchison Geometry , 2006 .

[12]  Thaddeus Tarpey,et al.  Clustering Functional Data , 2003, J. Classif..

[13]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[14]  J. Mateu,et al.  Ordinary kriging for function-valued spatial data , 2011, Environmental and Ecological Statistics.

[15]  Claude Manté,et al.  Cokriging for spatial functional data , 2010, J. Multivar. Anal..

[16]  Andre G. Journel,et al.  Markov Models for Cross-Covariances , 1999 .

[17]  Jorge Mateu,et al.  Statistics for spatial functional data: some recent contributions , 2009 .

[18]  H. Luschgy Linear Estimators and Radonifying Operators , 1996 .

[19]  D. Bosq Linear Processes in Function Spaces: Theory And Applications , 2000 .

[20]  J. Marron,et al.  Registration of Functional Data Using Fisher-Rao Metric , 2011, 1103.3817.

[21]  Philippe Vieu,et al.  Variable selection in infinite-dimensional problems , 2014 .

[22]  S. Vantini On the definition of phase and amplitude variability in functional data analysis , 2009, TEST.

[23]  Jorge Mateu,et al.  A universal kriging approach for spatial functional data , 2013, Stochastic Environmental Research and Risk Assessment.

[24]  A. Mandelbaum,et al.  Linear estimators and measurable linear transformations on a Hilbert space , 1984 .

[25]  Denis Bosq,et al.  Linear Processes in Function Spaces , 2000 .

[26]  A. Cuevas A partial overview of the theory of statistics with functional data , 2014 .

[27]  Jane-Ling Wang,et al.  Stringing High-Dimensional Data for Functional Analysis , 2011 .

[28]  V. Pawlowsky-Glahn,et al.  Bayes Hilbert Spaces , 2014 .

[29]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[30]  Jorge Mateu,et al.  Statistics for spatial functional data , 2008 .

[31]  Jean Picard,et al.  Representation formulae for the fractional Brownian motion , 2009, 0912.3168.

[32]  B. Silverman,et al.  Functional Data Analysis , 1997 .

[33]  Alessandra Menafoglio,et al.  A Universal Kriging predictor for spatially dependent functional data of a Hilbert Space , 2013 .

[34]  Alberto Guadagnini,et al.  A kriging approach based on Aitchison geometry for the characterization of particle-size curves in heterogeneous aquifers , 2014, Stochastic Environmental Research and Risk Assessment.

[35]  Alberto Guadagnini,et al.  A Class-Kriging Predictor for Functional Compositions with Application to Particle-Size Curves in Heterogeneous Aquifers , 2016, Mathematical Geosciences.

[36]  Simona Perotto,et al.  CMFWI: Coupled Multiscenario Full Waveform Inversion , 2017 .

[37]  Ludmil T. Zikatanov,et al.  A uniform additive Schwarz preconditioner for the $hp$-version of Discontinuous Galerkin approximations of elliptic problems , 2014, 1412.0876.

[38]  C. Giverso,et al.  Branching instability in expanding bacterial colonies , 2015, Journal of The Royal Society Interface.

[39]  Simone Vantini,et al.  K-mean Alignment for Curve Clustering , 2010, Comput. Stat. Data Anal..