Modeling the formation and growth of atmospheric molecular clusters: A review

Abstract Molecular clusters are ubiquitous constituents of the ambient atmosphere, that can grow into larger sizes forming new aerosol particles. The formation and growth of small clusters into aerosol particles remain one of the largest uncertainties in global climate predictions. This has made the modelling of atmospheric molecular clustering into an active field of research, yielding direct molecular level information about the formation mechanism. We review the present state-of-the-art quantum chemical methods and cluster distribution dynamics models that are applied to study the formation and growth of atmospheric molecular clusters. We outline the current challenges in applying theoretical methods and the future directions to move the field forward.

[1]  J. A. Navarro,et al.  Hydration of atmospherically relevant molecular clusters: computational chemistry and classical thermodynamics. , 2014, The journal of physical chemistry. A.

[2]  P. Ge,et al.  Molecular understanding of the interaction of amino acids with sulfuric acid in the presence of water and the atmospheric implication. , 2018, Chemosphere.

[3]  Qingzhu Zhang,et al.  A molecular understanding of the interaction of typical aromatic acids with common aerosol nucleation precursors and their atmospheric implications , 2019, RSC advances.

[4]  B. Finlayson‐Pitts,et al.  Simplified mechanism for new particle formation from methanesulfonic acid, amines, and water via experiments and ab initio calculations , 2012, Proceedings of the National Academy of Sciences.

[5]  J. Onuchic,et al.  Understanding protein folding with energy landscape theory Part I: Basic concepts , 2002, Quarterly Reviews of Biophysics.

[6]  M. Rissanen,et al.  α-Pinene Autoxidation Products May Not Have Extremely Low Saturation Vapor Pressures Despite High O:C Ratios. , 2016, The journal of physical chemistry. A.

[7]  Toshiro Kubota,et al.  ArbAlign: A Tool for Optimal Alignment of Arbitrarily Ordered Isomers Using the Kuhn-Munkres Algorithm , 2017, J. Chem. Inf. Model..

[8]  Peter H. McMurry,et al.  The History of Condensation Nucleus Counters , 2000 .

[9]  T. Petäjä,et al.  The Role of Sulfuric Acid in Atmospheric Nucleation , 2010, Science.

[10]  James Allan,et al.  The molecular identification of organic compounds in the atmosphere: state of the art and challenges. , 2015, Chemical reviews.

[11]  W. D. Davis Abstract: Surface Ionization Mass Spectroscopy of Airborne Particulates , 1973 .

[12]  Yisheng Xu,et al.  Estimating the Lower Limit of the Impact of Amines on Nucleation in the Earth's Atmosphere , 2015, Entropy.

[13]  G. Shields,et al.  Effect of Mixing Ammonia and Alkylamines on Sulfate Aerosol Formation. , 2018, The journal of physical chemistry. A.

[14]  Timothy A. Su,et al.  Parametrization of the ion–polar molecule collision rate constant by trajectory calculations , 1982 .

[15]  Álvaro González Measurement of Areas on a Sphere Using Fibonacci and Latitude–Longitude Lattices , 2009, 0912.4540.

[16]  H. Vehkamäki,et al.  Computational Study on the Effect of Hydration on New Particle Formation in the Sulfuric Acid/Ammonia and Sulfuric Acid/Dimethylamine Systems. , 2016, The journal of physical chemistry. A.

[17]  Robert F. Hout,et al.  Molecular orbital studies of vibrational frequencies , 2009 .

[18]  Christopher J. Johnson,et al.  The Interplay Between Hydrogen Bonding and Coulombic Forces in Determining the Structure of Sulfuric Acid-Amine Clusters. , 2018, The journal of physical chemistry letters.

[19]  W. Green,et al.  Anharmonic corrections to vibrational transition intensities , 1990 .

[20]  A. Bandy,et al.  A Density Functional Theory Study of the Hydrates of NH3·H2SO4 and Its Implications for the Formation of New Atmospheric Particles , 1999 .

[21]  D. Ceburnis,et al.  Molecular scale evidence of new particle formation via sequential addition of HIO3 , 2016, Nature.

[22]  J. Doye,et al.  Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.

[23]  H. Vehkamäki,et al.  Guanidine: A Highly Efficient Stabilizer in Atmospheric New-Particle Formation. , 2018, The journal of physical chemistry. A.

[24]  B. Finlayson‐Pitts,et al.  Proton Transfer in Mixed Clusters of Methanesulfonic Acid, Methylamine, and Oxalic Acid: Implications for Atmospheric Particle Formation. , 2017, The journal of physical chemistry. A.

[25]  H. Vehkamäki,et al.  The Effect of Water and Bases on the Clustering of a Cyclohexene Autoxidation Product C6H8O7 with Sulfuric Acid. , 2016, The journal of physical chemistry. A.

[26]  Dimitrios Morikis,et al.  Electrostatic Clustering and Free Energy Calculations Provide a Foundation for Protein Design and Optimization , 2010, Annals of Biomedical Engineering.

[27]  K. Mikkelsen,et al.  Hydration of Atmospheric Molecular Clusters III: Procedure for Efficient Free Energy Surface Exploration of Large Hydrated Clusters. , 2020, The journal of physical chemistry. A.

[28]  C. Cramer,et al.  Use of solution-phase vibrational frequencies in continuum models for the free energy of solvation. , 2011, The journal of physical chemistry. B.

[29]  M. Rissanen,et al.  Computational Comparison of Acetate and Nitrate Chemical Ionization of Highly Oxidized Cyclohexene Ozonolysis Intermediates and Products. , 2017, The journal of physical chemistry. A.

[30]  Jiarong Liu,et al.  Nucleation mechanisms of iodic acid in clean and polluted coastal regions. , 2020, Chemosphere.

[31]  Hanna Vehkamäki,et al.  Classical Nucleation Theory in Multicomponent Systems , 2006 .

[32]  Maofa Ge,et al.  A molecular-scale study on the role of lactic acid in new particle formation: Influence of relative humidity and temperature , 2017 .

[33]  K. Laasonen,et al.  Two sulfuric acids in small water clusters , 2003 .

[34]  Christopher J. Hogan,et al.  Ion mobility spectrometry-mass spectrometry examination of the structures, stabilities, and extents of hydration of dimethylamine-sulfuric acid clusters. , 2016, Physical chemistry chemical physics : PCCP.

[35]  H. Vehkamäki,et al.  Formation of atmospheric molecular clusters consisting of sulfuric acid and C8H12O6 tricarboxylic acid. , 2017, Physical chemistry chemical physics : PCCP.

[36]  J. Reid,et al.  The viscosity of atmospherically relevant organic particles , 2018, Nature Communications.

[37]  P. Ge,et al.  Theoretical study of the hydration effects on alkylamine and alkanolamine clusters and the atmospheric implication. , 2019, Chemosphere.

[38]  A. Wexler,et al.  Atmospheric amines - Part I. A review , 2011 .

[39]  Johannes M. Dieterich,et al.  OGOLEM: Global cluster structure optimisation for arbitrary mixtures of flexible molecules. A multiscaling, object-oriented approach , 2010 .

[40]  T. Petäjä,et al.  Amine and guanidine emissions from a boreal forest floor , 2020 .

[41]  Ce Zhou,et al.  Augmenting Basin-Hopping With Techniques From Unsupervised Machine Learning: Applications in Spectroscopy and Ion Mobility , 2019, Front. Chem..

[42]  K. Müller,et al.  Machine Learning Predictions of Molecular Properties: Accurate Many-Body Potentials and Nonlocality in Chemical Space , 2015, The journal of physical chemistry letters.

[43]  G. Wilemski,et al.  Binary nucleation kinetics. II. Numerical solution of the birth–death equations , 1995 .

[44]  K. Mikkelsen,et al.  Sulfuric Acid and Sulfuric Acid Hydrates in the Gas Phase: A DFT Investigation† , 2004 .

[45]  Amine substitution into sulfuric acid – ammonia clusters , 2011 .

[46]  David J Wales,et al.  Exploring Energy Landscapes. , 2018, Annual review of physical chemistry.

[47]  Liangxu Xie,et al.  Enhanced QM/MM sampling for free energy calculation of chemical reactions: A case study of double proton transfer. , 2019, The Journal of chemical physics.

[48]  M. Kulmala,et al.  An improved model for hydrate formation in sulfuric acid–water nucleation , 2002 .

[49]  K. M. Nazarenko,et al.  H2SO4–H2O–NH3 ternary ion-mediated nucleation (TIMN): kinetic-based model and comparison with CLOUD measurements , 2018, Atmospheric Chemistry and Physics.

[50]  Martin Bødker Enghoff,et al.  The role of atmospheric ions in aerosol nucleation – a review , 2008 .

[51]  M. Kulmala,et al.  Estimating the NH 3 :H 2 SO 4 ratio of nucleating clusters in atmospheric conditions using quantum chemical methods , 2007 .

[52]  C. Kuang,et al.  The role of cluster energy nonaccommodation in atmospheric sulfuric acid nucleation. , 2010, The Journal of chemical physics.

[53]  H. Vehkamäki,et al.  Coupled Cluster Evaluation of the Stability of Atmospheric Acid-Base Clusters with up to 10 Molecules. , 2016, The journal of physical chemistry. A.

[54]  Liming Wang Clusters of hydrated methane sulfonic acid CH3SO3H.(H2O)n (n = 1-5): a theoretical study. , 2007, The journal of physical chemistry. A.

[55]  U. Pöschl,et al.  Multiphase chemistry at the atmosphere-biosphere interface influencing climate and public health in the anthropocene. , 2015, Chemical reviews.

[56]  H. Hansson,et al.  Gas‐aerosol relationships of H2SO4, MSA, and OH: Observations in the coastal marine boundary layer at Mace Head, Ireland , 2002 .

[57]  Filippo Federici Canova,et al.  DScribe: Library of Descriptors for Machine Learning in Materials Science , 2019, Comput. Phys. Commun..

[58]  D. Doren,et al.  Structure and energetics of nanometer size clusters of sulfuric acid with ammonia and dimethylamine. , 2012, The journal of physical chemistry. A.

[59]  Martin Bødker Enghoff,et al.  Experimental evidence for the role of ions in particle nucleation under atmospheric conditions , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[60]  T. Petäjä,et al.  New particle formation in the free troposphere: A question of chemistry and timing , 2016, Science.

[61]  Ya-Juan Han,et al.  Formation of atmospheric molecular clusters consisting of methanesulfonic acid and sulfuric acid: Insights from flow tube experiments and cluster dynamics simulations , 2019, Atmospheric Environment.

[62]  G. Shields,et al.  Hydration of the sulfuric acid-methylamine complex and implications for aerosol formation. , 2014, The journal of physical chemistry. A.

[63]  Dongping Chen,et al.  Atmospheric implication of synergy in methanesulfonic acid–base trimers: a theoretical investigation , 2020, RSC advances.

[64]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[65]  J. S. Francisco,et al.  Unexpected quenching effect on new particle formation from the atmospheric reaction of methanol with SO3 , 2019, Proceedings of the National Academy of Sciences.

[66]  K. Sellegri,et al.  Enhancing effect of dimethylamine in sulfuric acid nucleation in the presence of water – a computational study , 2010 .

[67]  H. Vehkamäki,et al.  Structures, Hydration, and Electrical Mobilities of Bisulfate Ion-Sulfuric Acid-Ammonia/Dimethylamine Clusters: A Computational Study. , 2015, The journal of physical chemistry. A.

[68]  D. Doren,et al.  Formation and growth of molecular clusters containing sulfuric acid, water, ammonia, and dimethylamine. , 2014, The journal of physical chemistry. A.

[69]  D. Wales,et al.  Nested basin-sampling. , 2019, Journal of chemical theory and computation.

[70]  B. Huebert,et al.  Observations of H2SO4 and MSA during PEM-Tropics-A , 1999 .

[71]  Jun Zhang,et al.  ABCluster: the artificial bee colony algorithm for cluster global optimization. , 2015, Physical chemistry chemical physics : PCCP.

[72]  Shuai Jiang,et al.  Study of Cl−(H2O)n (n = 1–4) using basin‐hopping method coupled with density functional theory , 2014, J. Comput. Chem..

[73]  James C. Ianni,et al.  Study of the Hydrates of H2SO4 Using Density Functional Theory , 1998 .

[74]  Bidyut Baran Chaudhuri,et al.  How to choose a representative subset from a set of data in multi-dimensional space , 1994, Pattern Recognit. Lett..

[75]  Alexey B. Nadykto,et al.  Strong hydrogen bonding between atmospheric nucleation precursors and common organics , 2007 .

[76]  Renyi Zhang,et al.  A theoretical study of hydrated molecular clusters of amines and dicarboxylic acids. , 2013, The Journal of chemical physics.

[77]  B. Finlayson‐Pitts,et al.  Uptake of water by an acid-base nanoparticle: theoretical and experimental studies of the methanesulfonic acid-methylamine system. , 2018, Physical chemistry chemical physics : PCCP.

[78]  J. Elm Unexpected Growth Coordinate in Large Clusters Consisting of Sulfuric Acid and C8H12O6 Tricarboxylic Acid. , 2019, The journal of physical chemistry. A.

[79]  Gregory K. Schenter,et al.  Dynamical Nucleation Theory: A New Molecular Approach to Vapor-Liquid Nucleation , 1999 .

[80]  Qingzhu Zhang,et al.  Interactions of sulfuric acid with common atmospheric bases and organic acids: Thermodynamics and implications to new particle formation. , 2020, Journal of environmental sciences.

[81]  Shuai Jiang,et al.  Interaction of oxalic acid with methylamine and its atmospheric implications , 2017, RSC advances.

[82]  M. Smoluchowski,et al.  Drei Vortrage uber Diffusion, Brownsche Bewegung und Koagulation von Kolloidteilchen , 1916 .

[83]  S. Grimme Supramolecular binding thermodynamics by dispersion-corrected density functional theory. , 2012, Chemistry.

[84]  Qingzhu Zhang,et al.  A density functional theory study of the molecular interactions between a series of amides and sulfuric acid. , 2019, Chemosphere.

[85]  E. Atlas,et al.  Emissions from biomass burning in the Yucatan , 2009 .

[86]  G. Yue,et al.  Theory of the formation of aerosols of volatile binary solutions through the ion-induced nucleation process , 1979 .

[87]  H. Vehkamäki,et al.  Piperazine Enhancing Sulfuric Acid-Based New Particle Formation: Implications for the Atmospheric Fate of Piperazine. , 2019, Environmental science & technology.

[88]  F. Yu Effect of ammonia on new particle formation: A kinetic H2SO4-H2O-NH3 nucleation model constrained by laboratory measurements , 2006 .

[89]  H. Vehkamäki,et al.  Electrical charging changes the composition of sulfuric acid-ammonia/dimethylamine clusters , 2014 .

[90]  Renyi Zhang,et al.  Theoretical investigation of interaction of dicarboxylic acids with common aerosol nucleation precursors. , 2012, The journal of physical chemistry. A.

[91]  Qingzhu Zhang,et al.  Theoretical study of the cis-pinonic acid and its atmospheric hydrolysate participation in the atmospheric nucleation. , 2019, The Science of the total environment.

[92]  D. Tanner,et al.  Measurement of the gas phase concentration of H2SO4 and methane sulfonic acid and estimates of H2SO4 production and loss in the atmosphere , 1993 .

[93]  Wenliang Wang,et al.  Formation mechanism of methanesulfonic acid and ammonia clusters: A kinetics simulation study , 2020 .

[94]  I. Riipinen,et al.  Multicomponent new particle formation from sulfuric acid, ammonia, and biogenic vapors , 2018, Science Advances.

[95]  H. Vehkamäki,et al.  Methanesulfonic Acid-driven New Particle Formation Enhanced by Monoethanolamine: A Computational Study. , 2019, Environmental science & technology.

[96]  J. Thornton,et al.  An iodide-adduct high-resolution time-of-flight chemical-ionization mass spectrometer: application to atmospheric inorganic and organic compounds. , 2014, Environmental science & technology.

[97]  M. Kulmala,et al.  The role of ammonia in sulfuric acid ion induced nucleation , 2008 .

[98]  J. Behler Atom-centered symmetry functions for constructing high-dimensional neural network potentials. , 2011, The Journal of chemical physics.

[99]  F. Tao,et al.  Structure of the sulfuric acid-ammonia system and the effect of water molecules in the gas phase , 1999 .

[100]  Yisheng Xu,et al.  Amines in the Earth's Atmosphere: A Density Functional Theory Study of the Thermochemistry of Pre-Nucleation Clusters , 2011, Entropy.

[101]  L. Halonen,et al.  Effects of Global and Local Anharmonicities on the Thermodynamic Properties of Sulfuric Acid Monohydrate. , 2016, Journal of chemical theory and computation.

[102]  T. Petäjä,et al.  On the formation of sulphuric acid - amine clusters in varying atmospheric conditions and its influence on atmospheric new particle formation , 2012 .

[103]  Edward Charles Fortner,et al.  Atmospheric New Particle Formation Enhanced by Organic Acids , 2004, Science.

[104]  H. Vehkamäki,et al.  Configurational Sampling of Noncovalent (Atmospheric) Molecular Clusters: Sulfuric Acid and Guanidine. , 2019, The journal of physical chemistry. A.

[105]  M. Rissanen,et al.  Modeling the Charging of Highly Oxidized Cyclohexene Ozonolysis Products Using Nitrate-Based Chemical Ionization. , 2015, The journal of physical chemistry. A.

[106]  H. Svensmark,et al.  Cosmic ray decreases affect atmospheric aerosols and clouds , 2009 .

[107]  R. McGraw,et al.  Hydrogen-bonding interaction in molecular complexes and clusters of aerosol nucleation precursors. , 2009, The journal of physical chemistry. A.

[108]  B. Finlayson‐Pitts,et al.  Reactions of Methanesulfonic Acid with Amines and Ammonia as a Source of New Particles in Air. , 2016, The journal of physical chemistry. B.

[109]  Xiao Cheng Zeng,et al.  Isomer identification and resolution in small gold clusters. , 2010, The Journal of chemical physics.

[110]  J. Seinfeld,et al.  Marine aerosol formation from biogenic iodine emissions , 2002, Nature.

[111]  S. Warren,et al.  Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate , 1987, Nature.

[112]  J. Elm Elucidating the Limiting Steps in Sulfuric Acid-Base New Particle Formation. , 2017, The journal of physical chemistry. A.

[113]  Y. Liu,et al.  Early-life exposure to three size-fractionated ultrafine and fine atmospheric particulates in Beijing exacerbates asthma development in mature mice , 2018, Particle and Fibre Toxicology.

[114]  V. Molinero,et al.  The enhancement mechanism of glycolic acid on the formation of atmospheric sulfuric acid-ammonia molecular clusters , 2017 .

[115]  Wei Chen,et al.  Molecular enhanced sampling with autoencoders: On‐the‐fly collective variable discovery and accelerated free energy landscape exploration , 2017, J. Comput. Chem..

[116]  Jeremy R. Horne,et al.  The future of airborne sulfur-containing particles in the absence of fossil fuel sulfur dioxide emissions , 2015, Proceedings of the National Academy of Sciences.

[117]  M. McGrath,et al.  From quantum chemical formation free energies to evaporation rates , 2011 .

[118]  Joel M. Bowman,et al.  Self‐consistent field energies and wavefunctions for coupled oscillators , 1978 .

[119]  I. Riipinen,et al.  Long-term field measurements of charged and neutral clusters using Neutral cluster and Air Ion Spectrometer (NAIS) , 2009 .

[120]  H. Vehkamäki,et al.  Diamines Can Initiate New Particle Formation in the Atmosphere. , 2017, The journal of physical chemistry. A.

[121]  Ove Christiansen,et al.  A second quantization formulation of multimode dynamics. , 2004, The Journal of chemical physics.

[122]  G. Mann,et al.  Impact of nucleation on global CCN , 2009 .

[123]  J. Thornton,et al.  Modeling the Detection of Organic and Inorganic Compounds Using Iodide-Based Chemical Ionization. , 2016, The journal of physical chemistry. A.

[124]  Keiji Morokuma,et al.  Coexistence of Neutral and Ion-Pair Clusters of Hydrated Sulfuric Acid H2SO4(H2O)n (n = 1−5)A Molecular Orbital Study , 1999 .

[125]  Kelling J. Donald,et al.  cluster: Searching for Unique Low Energy Minima of Structures Using a Novel Implementation of a Genetic Algorithm. , 2014, Journal of chemical theory and computation.

[126]  Frank Jensen,et al.  An Atomic Counterpoise Method for Estimating Inter- and Intramolecular Basis Set Superposition Errors. , 2010, Journal of chemical theory and computation.

[127]  F. Yu,et al.  Large ternary hydrogen-bonded pre-nucleation clusters in the Earth’s atmosphere , 2011 .

[128]  G. A. Petersson,et al.  A complete basis set model chemistry. VI. Use of density functional geometries and frequencies , 1999 .

[129]  A. Wexler,et al.  Growth of Ammonium Bisulfate Clusters by Adsorption of Oxygenated Organic Molecules. , 2015, The journal of physical chemistry. A.

[130]  F. Yu,et al.  Theoretical analysis of the gas-phase hydration of common atmospheric pre-nucleation (HSO4-)(H2O)n and (H3O+)(H2SO4)(H2O)n cluster ions , 2009 .

[131]  Jorge Lima,et al.  Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation , 2011, Nature.

[132]  Shuai Jiang,et al.  Hydration of a sulfuric acid–oxalic acid complex: acid dissociation and its atmospheric implication , 2015 .

[133]  M. Kulmala Dynamical atmospheric cluster model , 2010 .

[134]  I. Riipinen,et al.  The role of low-volatility organic compounds in initial particle growth in the atmosphere , 2016, Nature.

[135]  Berhane Temelso,et al.  Benchmark structures and binding energies of small water clusters with anharmonicity corrections. , 2011, The journal of physical chemistry. A.

[136]  R. Marcus Unimolecular dissociations and free radical recombination reactions , 1952 .

[137]  D. R. Hanson,et al.  Sulfuric acid nucleation: An experimental study of the effect of seven bases , 2015 .

[138]  João Almeida,et al.  Neutral molecular cluster formation of sulfuric acid–dimethylamine observed in real time under atmospheric conditions , 2014, Proceedings of the National Academy of Sciences.

[139]  Donald G. Truhlar,et al.  A simple approximation for the vibrational partition function of a hindered internal rotation , 1991 .

[140]  A. Kürten New particle formation from sulfuric acid and ammonia: nucleation and growth model based on thermodynamics derived from CLOUD measurements for a wide range of conditions , 2019, Atmospheric Chemistry and Physics.

[141]  I. Ford,et al.  A classical reactive potential for molecular clusters of sulphuric acid and water , 2016, 1601.02401.

[142]  Michael Brauer,et al.  Associations of ambient air pollution with chronic obstructive pulmonary disease hospitalization and mortality. , 2013, American journal of respiratory and critical care medicine.

[143]  U. Pöschl,et al.  Global distribution of particle phase state in atmospheric secondary organic aerosols , 2017, Nature Communications.

[144]  J. Seinfeld,et al.  Oxidation Products of Biogenic Emissions Contribute to Nucleation of Atmospheric Particles , 2014, Science.

[145]  Russ B Altman,et al.  Machine learning in chemoinformatics and drug discovery. , 2018, Drug discovery today.

[146]  L. Ahonen,et al.  Measurements of sub-3 nm particles using a particle size magnifier in different environments: from clean mountain top to polluted megacities , 2017 .

[147]  F. Jensen Introduction to Computational Chemistry , 1998 .

[148]  F. Yu From molecular clusters to nanoparticles: second-generation ion-mediated nucleation model , 2006 .

[149]  T. Zeuch,et al.  Investigation of nucleation kinetics in H2SO4 vapor through modeling of gas phase kinetics coupled with particle dynamics. , 2018, The Journal of chemical physics.

[150]  B. C. Garrett,et al.  Dynamical nucleation theory: Calculation of condensation rate constants for small water clusters , 1999 .

[151]  K. Mikkelsen,et al.  Influence of nucleation precursors on the reaction kinetics of methanol with the OH radical. , 2013, The journal of physical chemistry. A.

[152]  Yu Zhao,et al.  Formation of atmospheric molecular clusters of methanesulfonic acid–Diethylamine complex and its atmospheric significance , 2020, Atmospheric Environment.

[153]  T. Kurtén,et al.  Phosphoric acid – a potentially elusive participant in atmospheric new particle formation , 2017 .

[154]  C. Brooks,et al.  First-principles calculation of the folding free energy of a three-helix bundle protein. , 1995, Science.

[155]  H. Kjaergaard,et al.  Hydroxyl radical-induced formation of highly oxidized organic compounds , 2016, Nature Communications.

[156]  E. Kochanski,et al.  Theoretical studies of sulfuric acid monohydrate: Neutral or ionic complex? , 1989 .

[157]  L. Farkas Keimbildungsgeschwindigkeit in übersättigten Dämpfen , 1927 .

[158]  Kurt V Mikkelsen,et al.  Hydration of Atmospheric Molecular Clusters: A New Method for Systematic Configurational Sampling. , 2018, The journal of physical chemistry. A.

[159]  T. Kurtén,et al.  What Is Required for Highly Oxidized Molecules To Form Clusters with Sulfuric Acid? , 2017, The journal of physical chemistry. A.

[160]  I. Riipinen,et al.  Effect of Bisulfate, Ammonia, and Ammonium on the Clustering of Organic Acids and Sulfuric Acid. , 2017, The journal of physical chemistry. A.

[161]  K. Mikkelsen,et al.  Computational approaches for efficiently modelling of small atmospheric clusters , 2014 .

[162]  R. Volkamer,et al.  Can COSMOTherm Predict a Salting in Effect? , 2017, The journal of physical chemistry. A.

[163]  J. Smith,et al.  Molecular-Level Understanding of Synergistic Effects in Sulfuric Acid-Amine-Ammonia Mixed Clusters. , 2019, The journal of physical chemistry. A.

[164]  H. Vehkamäki,et al.  Free energy barrier in the growth of sulfuric acid-ammonia and sulfuric acid-dimethylamine clusters. , 2013, The Journal of chemical physics.

[165]  Annia Galano,et al.  A new approach to counterpoise correction to BSSE , 2006, J. Comput. Chem..

[166]  T. Petäjä,et al.  Composition and temporal behavior of ambient ions in the boreal forest , 2010 .

[167]  T. Petäjä,et al.  Atmospheric sulphuric acid and neutral cluster measurements using CI-APi-TOF , 2011 .

[168]  M. Rupp,et al.  Chemical diversity in molecular orbital energy predictions with kernel ridge regression. , 2018, The Journal of chemical physics.

[169]  R. Kondor,et al.  On representing chemical environments , 2012, 1209.3140.

[170]  G. Shields,et al.  Computational study of the hydration of sulfuric acid dimers: implications for acid dissociation and aerosol formation. , 2012, The journal of physical chemistry. A.

[171]  M. Bowers,et al.  Theory of ion‐polar molecule collisions. Comparison with experimental charge transfer reactions of rare gas ions to geometric isomers of difluorobenzene and dichloroethylene , 1973 .

[172]  Christopher J. Hogan,et al.  Ion-pair evaporation from ionic liquid clusters , 2010, Journal of the American Society for Mass Spectrometry.

[173]  S. Perrier,et al.  CI-Orbitrap: An Analytical Instrument To Study Atmospheric Reactive Organic Species. , 2019, Analytical chemistry.

[174]  A. Bandy,et al.  A theoretical study of the hydrates of (H 2 SO 4 ) 2 and its implications for the formation of new atmospheric particles , 2000 .

[175]  M. Kulmala,et al.  Can Highly Oxidized Organics Contribute to Atmospheric New Particle Formation? , 2016, The journal of physical chemistry. A.

[176]  H. Svensmark,et al.  Low cloud properties influenced by cosmic rays , 2000, Physical review letters.

[177]  T. An,et al.  Interaction between succinic acid and sulfuric acid–base clusters , 2019, Atmospheric Chemistry and Physics.

[178]  J. Seinfeld,et al.  Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere , 2013, Nature.

[179]  K. Mikkelsen,et al.  Molecular interaction of pinic acid with sulfuric acid: exploring the thermodynamic landscape of cluster growth. , 2014, The journal of physical chemistry. A.

[180]  Ya-Juan Han,et al.  Synergistic Effect of Ammonia and Methylamine on Nucleation in the Earth's Atmosphere. A Theoretical Study. , 2018, The journal of physical chemistry. A.

[181]  G. Shields,et al.  Quantum mechanical study of sulfuric acid hydration: atmospheric implications. , 2012, The journal of physical chemistry. A.

[182]  Paul S Mischel,et al.  Gene expression profiling identifies molecular subtypes of gliomas , 2003, Oncogene.

[183]  S. Grimme,et al.  A geometrical correction for the inter- and intra-molecular basis set superposition error in Hartree-Fock and density functional theory calculations for large systems. , 2012, The Journal of chemical physics.

[184]  M. Kulmala,et al.  Ab initio and density functional theory reinvestigation of gas-phase sulfuric acid monohydrate and ammonium hydrogen sulfate. , 2006, The journal of physical chemistry. A.

[185]  Adrià Cereto-Massagué,et al.  Molecular fingerprint similarity search in virtual screening. , 2015, Methods.

[186]  T. Kurtén,et al.  Computational Study of the Clustering of a Cyclohexene Autoxidation Product C6H8O7 with Itself and Sulfuric Acid. , 2015, The journal of physical chemistry. A.

[187]  L. Halonen,et al.  Ab initio structural and vibrational investigation of sulfuric acid monohydrate. , 2012, The journal of physical chemistry. A.

[188]  K. Laasonen,et al.  Ab initio study of gas-phase sulphuric acid hydrates containing 1 to 3 water molecules , 1998 .

[189]  Kurt V Mikkelsen,et al.  Hydration of Atmospheric Molecular Clusters II: Organic Acid-Water Clusters. , 2018, The journal of physical chemistry. A.

[190]  Xiaotong Jiang,et al.  Contribution of methane sulfonic acid to new particle formation in the atmosphere. , 2017, Chemosphere.

[191]  Hanna Vehkamäki,et al.  Amines are likely to enhance neutral and ion-induced sulfuric acid-water nucleation in the atmosphere more effectively than ammonia , 2008 .

[192]  Yunhong Zhang,et al.  The potential role of malonic acid in the atmospheric sulfuric acid - Ammonia clusters formation. , 2018, Chemosphere.

[193]  Weijun Zhang,et al.  Theoretical Studies on Reactions of OH with H2SO4…NH3 Complex and NH2 with H2SO4 in the Presence of Water , 2016 .

[194]  H. Vehkamäki,et al.  Modeling on Fragmentation of Clusters inside a Mass Spectrometer , 2018, The journal of physical chemistry. A.

[195]  K. Mikkelsen,et al.  Assessment of binding energies of atmospherically relevant clusters. , 2013, Physical chemistry chemical physics : PCCP.

[196]  B. Finlayson‐Pitts,et al.  Integrated experimental and theoretical approach to probe the synergistic effect of ammonia in methanesulfonic acid reactions with small alkylamines. , 2020, Environmental science. Processes & impacts.

[197]  J. Seinfeld,et al.  Ion-induced nucleation of pure biogenic particles , 2016, Nature.

[198]  Ulrich Pöschl,et al.  Gas uptake and chemical aging of semisolid organic aerosol particles , 2011, Proceedings of the National Academy of Sciences.

[199]  R. Becker,et al.  Kinetische Behandlung der Keimbildung in übersättigten Dämpfen , 1935 .

[200]  Lei Chen,et al.  Identification of new candidate drugs for lung cancer using chemical–chemical interactions, chemical–protein interactions and a K-means clustering algorithm , 2016, Journal of biomolecular structure & dynamics.

[201]  Christopher J. Johnson,et al.  Direct Link between Structure and Hydration in Ammonium and Aminium Bisulfate Clusters Implicated in Atmospheric New Particle Formation. , 2018, The journal of physical chemistry letters.

[202]  M. Valiev,et al.  Structures and energetics of hydrated deprotonated cis-pinonic acid anion clusters and their atmospheric relevance. , 2017, Physical chemistry chemical physics : PCCP.

[203]  M. Head‐Gordon,et al.  Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. , 2008, Physical chemistry chemical physics : PCCP.

[204]  Peter H. McMurry,et al.  A review of atmospheric aerosol measurements , 2000 .

[205]  J. Elm An Atmospheric Cluster Database Consisting of Sulfuric Acid, Bases, Organics, and Water , 2019, ACS Omega.

[206]  Andreas Ziehe,et al.  Learning Invariant Representations of Molecules for Atomization Energy Prediction , 2012, NIPS.

[207]  Martin Bødker Enghoff,et al.  Increased ionization supports growth of aerosols into cloud condensation nuclei , 2017, Nature Communications.

[208]  J. Thornton,et al.  Estimating the saturation vapor pressures of isoprene oxidation products C5H12O6 and C5H10O6 using COSMO-RS , 2018, Atmospheric Chemistry and Physics.

[209]  M. Smoluchowski,et al.  Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen , 1927 .

[210]  Jim Pfaendtner,et al.  The 1-D hindered rotor approximation , 2007 .

[211]  Shuai Jiang,et al.  Bidirectional Interaction of Alanine with Sulfuric Acid in the Presence of Water and the Atmospheric Implication. , 2016, The journal of physical chemistry. A.

[212]  J. Conradie,et al.  Structures, relative stability and binding energies of neutral water clusters, (H2O)2–30 , 2019, New Journal of Chemistry.

[213]  L. Ding,et al.  Clustering of amines and hydrazines in atmospheric nucleation , 2016 .

[214]  H. Kjaergaard,et al.  A large source of low-volatility secondary organic aerosol , 2014, Nature.

[215]  K. Laasonen,et al.  A density functional study on water-sulfuric acid-ammonia clusters and implications for atmospheric cluster formation , 2007 .

[216]  H. Vehkamäki,et al.  Methane sulfonic acid-enhanced formation of molecular clusters of sulfuric acid and dimethyl amine , 2014 .

[217]  Wei-Jun Zhang,et al.  Theoretical study of the hydration of atmospheric nucleation precursors with acetic acid. , 2014, The journal of physical chemistry. A.

[218]  Mikko Sipilä,et al.  New particle formation in the sulfuric acid–dimethylamine–water system: reevaluation of CLOUD chamber measurements and comparison to an aerosol nucleation and growth model , 2017 .

[219]  F. Yu,et al.  Enhancement in the production of nucleating clusters due to dimethylamine and large uncertainties in the thermochemistry of amine-enhanced nucleation , 2014 .

[220]  Y. Lei,et al.  Calculating Equilibrium Phase Distribution during the Formation of Secondary Organic Aerosol Using COSMOtherm. , 2015, Environmental science & technology.

[221]  K. Müller,et al.  Fast and accurate modeling of molecular atomization energies with machine learning. , 2011, Physical review letters.

[222]  T. Petäjä,et al.  Gas phase formation of extremely oxidized pinene reaction products in chamber and ambient air , 2012 .

[223]  W. Qin,et al.  Intermolecular structure and properties of the methanesulfonic acid–ammonia system in small water clusters , 2007 .

[224]  David W Toth,et al.  The TensorMol-0.1 model chemistry: a neural network augmented with long-range physics , 2017, Chemical science.

[225]  D. Karaboga,et al.  On the performance of artificial bee colony (ABC) algorithm , 2008, Appl. Soft Comput..

[226]  Shuai Jiang,et al.  Interaction of gas phase oxalic acid with ammonia and its atmospheric implications. , 2015, Physical chemistry chemical physics : PCCP.

[227]  Robert Stanton,et al.  Conformational analysis by intersection: CONAN , 2003, J. Comput. Chem..

[228]  Henrik Svensmark,et al.  Variation of cosmic ray flux and global cloud coverage—a missing link in solar-climate relationships , 1997 .

[229]  F. Yu,et al.  Formation and properties of hydrogen-bonded complexes of common organic oxalic acid with atmospheric nucleation precursors , 2010 .

[230]  J. Elm,et al.  Basis set convergence of the binding energies of strongly hydrogen-bonded atmospheric clusters. , 2017, Physical chemistry chemical physics : PCCP.

[231]  H. Vehkamäki,et al.  Effect of Conformers on Free Energies of Atmospheric Complexes. , 2016, The journal of physical chemistry. A.

[232]  K. Mikkelsen,et al.  Assessment of Density Functional Theory in Predicting Structures and Free Energies of Reaction of Atmospheric Prenucleation Clusters. , 2012, Journal of chemical theory and computation.

[233]  D. R. Hanson,et al.  Chemical ionization of clusters formed from sulfuric acid and dimethylamineor diamines , 2016 .

[234]  Ove Christiansen,et al.  Vibrational coupled cluster theory. , 2004, The Journal of chemical physics.

[235]  Lin Du,et al.  Hydrogen bonding in cyclic complexes of carboxylic acid–sulfuric acid and their atmospheric implications , 2016 .

[236]  G. Shields,et al.  Accurate predictions of water cluster formation, (H₂O)(n=2-10). , 2010, The journal of physical chemistry. A.

[237]  G. Shields,et al.  Computation of Atmospheric Concentrations of Molecular Clusters from ab initio Thermochemistry. , 2020, Journal of visualized experiments : JoVE.

[238]  Yunhong Zhang,et al.  Clustering mechanism of oxocarboxylic acids involving hydration reaction: Implications for the atmospheric models. , 2018, The Journal of chemical physics.

[239]  T. Petäjä,et al.  Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules , 2013, Proceedings of the National Academy of Sciences.

[240]  J. Elm,et al.  Neutral Sulfuric Acid-Water Clustering Rates: Bridging the Gap between Molecular Simulation and Experiment. , 2020, The journal of physical chemistry letters.

[241]  T. Petäjä,et al.  Bisulfate – cluster based atmospheric pressure chemical ionization mass spectrometer for high-sensitivity (< 100 ppqV) detection of atmospheric dimethyl amine: proof-of-concept and first ambient data from boreal forest , 2015 .

[242]  Shuai Jiang,et al.  An investigation about the structures, thermodynamics and kinetics of the formic acid involved molecular clusters , 2018 .

[243]  Jun Zhang,et al.  Global optimization of clusters of rigid molecules using the artificial bee colony algorithm. , 2016, Physical chemistry chemical physics : PCCP.

[244]  L. Ahonen,et al.  The role of ions in new particle formation in the CLOUD chamber , 2017 .

[245]  H. Vehkamäki,et al.  Rate enhancement in collisions of sulfuric acid molecules due to long-range intermolecular forces , 2019, Atmospheric Chemistry and Physics.

[246]  M. Rissanen,et al.  How well can we predict cluster fragmentation inside a mass spectrometer? , 2019, Chemical communications.

[247]  F. Yu,et al.  Large hydrogen-bonded pre-nucleation (HSO4-)(H2SO4)m(H2O)k and (HSO4-)(NH3)(H2SO4)m(H2O)k clusters in the earth's atmosphere. , 2013, The journal of physical chemistry. A.

[248]  I. Riipinen,et al.  Direct Observations of Atmospheric Aerosol Nucleation , 2013, Science.

[249]  Antje Wolf,et al.  Principal component and clustering analysis on molecular dynamics data of the ribosomal L11·23S subdomain , 2012, Journal of Molecular Modeling.

[250]  Miguel A. Caro,et al.  Optimizing many-body atomic descriptors for enhanced computational performance of machine learning based interatomic potentials , 2019, Physical Review B.

[251]  Poul Jørgensen,et al.  The second-order approximate coupled cluster singles and doubles model CC2 , 1995 .

[252]  K. Laasonen,et al.  Significance of ammonia in growth of atmospheric nanoclusters. , 2007, The journal of physical chemistry. A.

[253]  T. Kurtén,et al.  Density functional theory basis set convergence of sulfuric acid-containing molecular clusters , 2016 .

[254]  H. Kjaergaard,et al.  Highly Oxygenated Organic Molecules (HOM) from Gas-Phase Autoxidation Involving Peroxy Radicals: A Key Contributor to Atmospheric Aerosol , 2019, Chemical reviews.

[255]  Yizhan Luo,et al.  Atmospheric implications of hydration on the formation of methanesulfonic acid and methylamine clusters: A theoretical study. , 2019, Chemosphere.

[256]  S. Calderón,et al.  Thermodynamic properties of isoprene- and monoterpene-derived organosulfates estimated with COSMOtherm , 2020 .

[257]  H. Vehkamäki,et al.  From collisions to clusters: first steps of sulphuric acid nanocluster formation dynamics , 2014 .

[258]  Oliver Fleetwood,et al.  Molecular Insights from Conformational Ensembles via Machine Learning , 2019, Biophysical journal.

[259]  Barbara E. Wyslouzil,et al.  Binary nucleation kinetics. I. Self‐consistent size distribution , 1995 .

[260]  Álvaro R. Osornio-Vargas,et al.  Aeroparticles, Composition, and Lung Diseases , 2016, Front. Immunol..

[261]  Adam S. Foster,et al.  Machine learning hydrogen adsorption on nanoclusters through structural descriptors , 2018, npj Computational Materials.

[262]  Partially and fully deprotonated sulfuric acid in H2SO4(H2O)n (n = 6-9) clusters , 2004 .

[263]  J. Onuchic,et al.  Funnels, pathways, and the energy landscape of protein folding: A synthesis , 1994, Proteins.

[264]  D. R. Hanson,et al.  Diamine‐sulfuric acid reactions are a potent source of new particle formation , 2016 .

[265]  J. Smith,et al.  Role of base strength, cluster structure and charge in sulfuric-acid-driven particle formation , 2019, Atmospheric Chemistry and Physics.

[266]  F E Cohen,et al.  Protein conformational landscapes: Energy minimization and clustering of a long molecular dynamics trajectory , 1995, Proteins.

[267]  F. Yu,et al.  Effect of Ammonia on the Gas-Phase Hydration of the Common Atmospheric Ion HSO4− , 2008, International journal of molecular sciences.

[268]  I. Riipinen,et al.  New particle formation from sulfuric acid and amines: Comparison of monomethylamine, dimethylamine, and trimethylamine , 2017 .

[269]  T. Petäjä,et al.  Observations of biogenic ion-induced cluster formation in the atmosphere , 2018, Science Advances.

[270]  Matthew J. McGrath,et al.  Atmospheric Cluster Dynamics Code: a flexible method for solution of the birth-death equations , 2011 .

[271]  M. Kulmala,et al.  Quantum chemical studies of hydrate formation of H2SO4 and HSO4 , 2007 .

[272]  W. Courtney,et al.  Remarks on Homogeneous Nucleation , 1961 .

[273]  Hong He,et al.  Influence of atmospheric conditions on sulfuric acid-dimethylamine-ammonia-based new particle formation. , 2019, Chemosphere.

[274]  Gunnar Schmitz,et al.  Assessment of the DLPNO Binding Energies of Strongly Noncovalent Bonded Atmospheric Molecular Clusters , 2020, ACS omega.

[275]  D. R. Hanson,et al.  Stabilization of sulfuric acid dimers by ammonia, methylamine, dimethylamine, and trimethylamine , 2014 .

[276]  T. Petäjä,et al.  Particle Size Magnifier for Nano-CN Detection , 2011 .

[277]  M. Kulmala,et al.  Atmospheric Fate of Monoethanolamine: Enhancing New Particle Formation of Sulfuric Acid as an Important Removal Process. , 2017, Environmental science & technology.

[278]  Shuai Jiang,et al.  Characterization of the nucleation precursor (H2SO4–(CH3)2NH) complex: intra-cluster interactions and atmospheric relevance , 2016 .

[279]  H. Vehkamäki,et al.  Atmospheric Sulfuric Acid‐Dimethylamine Nucleation Enhanced by Trifluoroacetic Acid , 2020, Geophysical Research Letters.

[280]  Yuji Sugita,et al.  Neural Network and Nearest Neighbor Algorithms for Enhancing Sampling of Molecular Dynamics. , 2017, Journal of chemical theory and computation.

[281]  Reliable potential for small sulfuric acid–water clusters , 2003 .

[282]  Qingzhu Zhang,et al.  A density functional theory study of aldehydes and their atmospheric products participating in nucleation. , 2018, Physical chemistry chemical physics : PCCP.

[283]  H. Vehkamäki,et al.  Strong Hydrogen Bonded Molecular Interactions between Atmospheric Diamines and Sulfuric Acid. , 2016, The journal of physical chemistry. A.

[284]  G. Shields,et al.  Hydration of the bisulfate ion: atmospheric implications. , 2012, The journal of physical chemistry. A.

[285]  Hannah R. Leverentz,et al.  Energetics of atmospherically implicated clusters made of sulfuric acid, ammonia, and dimethyl amine. , 2013, The journal of physical chemistry. A.

[286]  K. Mikkelsen,et al.  Interaction of glycine with common atmospheric nucleation precursors. , 2013, The journal of physical chemistry. A.

[287]  F. Yu,et al.  Interaction between common organic acids and trace nucleation species in the Earth's atmosphere. , 2010, The journal of physical chemistry. A.

[288]  Matthias Rupp,et al.  Unified representation of molecules and crystals for machine learning , 2017, Mach. Learn. Sci. Technol..

[289]  M. Zondlo,et al.  Measurements of OH, H2SO4, and MSA during Tropospheric Ozone Production About the Spring Equinox (TOPSE) , 2003 .

[290]  Maofa Ge,et al.  The role of nitric acid in atmospheric new particle formation. , 2018, Physical chemistry chemical physics : PCCP.

[291]  J. Smith,et al.  Enhancing Potential of Trimethylamine Oxide on Atmospheric Particle Formation , 2019, Atmosphere.

[292]  N. Mihalopoulos,et al.  Gaseous (DMS, MSA, SO 2 , H 2 SO 4 and DMSO) and particulate (sulfate and methanesulfonate) sulfur species over the northeastern coast of Crete , 2003 .

[293]  I. Riipinen,et al.  The role of highly oxygenated organic molecules in the Boreal aerosol-cloud-climate system , 2019, Nature Communications.

[294]  Wenliang Wang,et al.  Role of glycine on sulfuric acid-ammonia clusters formation: Transporter or participator. , 2020, Journal of environmental sciences.

[295]  Ulrich Pöschl,et al.  An amorphous solid state of biogenic secondary organic aerosol particles , 2010, Nature.

[296]  I. Riipinen,et al.  Toward Direct Measurement of Atmospheric Nucleation , 2007, Science.