Reinforced geopolymer composites for enhanced material greenness and durability

Abstract The environmental impact of Ordinary Portland Cement (OPC) is significant because its production emits large amounts of CO2. Further, OPC durability is limited largely due to inherent brittleness. This review examines the environmental and economic impacts of OPC. Using supplementary cementitious materials to enhance material greenness or produce alternative binders such as geopolymers is discussed. This is followed by a review of recent efforts to increase durability through fiber reinforcement. Finally, the current state of the art of geopolymer composites (with both high material greenness and high durability) is discussed along with opportunities and challenges for these promising materials.

[1]  M. Ahmaruzzaman,et al.  A review on the utilization of fly ash , 2010 .

[2]  Victor C. Li,et al.  Durability properties of micro-cracked ECC containing high volumes fly ash , 2009 .

[3]  J. Davidovits Global warming impact on the cement and aggregates industries , 1994 .

[4]  Zhang Yunsheng,et al.  Geopolymer Extruded Composites with Incorporated Fly Ash and Polyvinyl Alcohol Short Fiber , 2009 .

[5]  B. Lothenbach,et al.  Physical and microstructural aspects of sulfate attack on ordinary and limestone blended Portland cements , 2009 .

[6]  Michael P. Davies,et al.  Tailings Impoundment Failures: Are Geotechnical Engineers Listening? , 2002 .

[7]  Perumalsamy N. Balaguru,et al.  Strength retention of fire resistant aluminosilicate–carbon composites under wet–dry conditions , 2000 .

[8]  Muhammad Fauzi Mohd. Zain,et al.  Production of rice husk ash for use in concrete as a supplementary cementitious material , 2011 .

[9]  C. Thaumaturgo,et al.  Fracture toughness of geopolymeric concretes reinforced with basalt fibers , 2005 .

[10]  Victor C. Li,et al.  Engineered Cementitious Composites , 2010 .

[11]  Michael D. A. Thomas,et al.  Use of Low-CO2 Portland Limestone Cement for Pavement Construction in Canada , 2010 .

[12]  Jan-Dirk Herbell,et al.  Utilization of fly ash from coal-fired power plants in China , 2008 .

[13]  Sarah L. Billington,et al.  Cyclic Response of Highly Ductile Fiber-Reinforced Cement-Based Composites , 2003 .

[14]  Aaron R. Sakulich,et al.  Mechanical and microstructural characterization of an alkali-activated slag/limestone fine aggregate concrete , 2009 .

[15]  Michael P. Davies,et al.  Impounded mine tailings: What are the failures telling us?* , 2001 .

[16]  V. Li,et al.  Application of Pseudo Strain-hardening Cementitious Composites to Shear Resistant Structural Elements , 1998 .

[17]  Cynthia T. Collins,et al.  Iron and steel slag , 1981 .

[18]  K. MacKenzie,et al.  Electrical and mechanical properties of aluminosilicate inorganic polymer composites with carbon nanotubes , 2009 .

[19]  P. Rivard,et al.  Influence of supplementary cementitious materials on engineering properties of high strength concrete , 2011 .

[20]  Dale P. Bentz,et al.  Influence of silica fume on diffusivity in cement-based materials: II. Multi-scale modeling of concrete diffusivity , 2000 .

[21]  En-Hua Yang,et al.  Autogenous healing of engineered cementitious composites at early age , 2011 .

[22]  J. Ferreira,et al.  Effect of test conditions on the bending strength of a geopolymer-reinforced composite , 2010, Journal of Materials Science.

[23]  Richard E. Lyon,et al.  FIRE RESPONSE OF GEOPOLYMER STRUCTURAL COMPOSITES , 1996 .

[24]  Mohammad Shekarchi,et al.  Transport properties in metakaolin blended concrete , 2010 .

[25]  C. Thaumaturgo,et al.  Fibre reinforcement and fracture response in geopolymeric mortars , 2003 .

[26]  J. Ideker,et al.  Advances in alternative cementitious binders , 2011 .

[27]  Carola Edvardsen,et al.  Water Permeability and Autogenous Healing of Cracks in Concrete , 1999 .

[28]  V. Li,et al.  Crack bridging in fiber reinforced cementitious composites with slip-hardening interfaces , 1997 .

[29]  Meirong Wang,et al.  Improvement of high-temperature mechanical properties of heat treated Cf/geopolymer composites by Sol-SiO2 impregnation , 2010 .

[30]  Victor C. Li,et al.  Durability of mechanically loaded engineered cementitious composites under highly alkaline environments , 2008 .

[31]  Aaron R. Sakulich,et al.  Self-Healing Characterization of Engineered Cementitious Composite Materials , 2010 .

[32]  Zhang JiLing,et al.  Ant community from west slope of Nushan Mountain in northwestern Yunnan Province. , 2009 .

[33]  B. Lothenbach,et al.  Supplementary cementitious materials , 2011 .

[34]  C. T. Tam,et al.  EFFECT OF WATER-TO-CEMENTITIOUS MATERIALS RATIO AND SILICA FUME ON THE AUTOGENOUS SHRINKAGE OF CONCRETE , 2003 .

[35]  Michael D. Lepech,et al.  Autogenous healing of engineered cementitious composites under wet–dry cycles , 2009 .

[36]  Waltraud M. Kriven,et al.  Geopolymer refractories for the glass manufacturing industry , 2008 .

[37]  Michael D.A. Thomas,et al.  The Use of Fly Ash in Concrete: Classification by Composition , 1999 .

[38]  Tiesong Lin,et al.  Effects of high-temperature heat treatment on the mechanical properties of unidirectional carbon fiber reinforced geopolymer composites , 2010 .

[39]  A. Chatterjee Indian Fly Ashes: Their Characteristics and Potential for Mechanochemical Activation for Enhanced Usability , 2011 .

[40]  Ernst Worrell,et al.  Emission Reduction of Greenhouse Gases from the Cement Industry , 2003 .

[41]  Bo Björkman,et al.  Hot stage processing of metallurgical slags , 2008 .

[42]  John L. Provis,et al.  LOW CO 2 CONCRETE: ARE WE MAKING ANY PROGRESS? , 2008 .

[43]  Michael D. Lepech,et al.  Life Cycle Modeling of Concrete Bridge Design: Comparison of Engineered Cementitious Composite Link Slabs and Conventional Steel Expansion Joints , 2005 .

[44]  J. Deventer,et al.  The Role of Inorganic Polymer Technology in the Development of ‘Green Concrete’ , 2007 .

[45]  V. Li,et al.  Nanoscale characterization of engineered cementitious composites (ECC) , 2011 .

[46]  Geoffrey P. Hammond,et al.  Embodied energy and carbon in construction materials , 2008 .

[47]  E. Gartner Industrially interesting approaches to “low-CO2” cements ☆ , 2004 .

[48]  Gregory A. Keoleian,et al.  Chapter 7 Life cycle based sustainability metrics , 2006 .

[49]  O. Yeheskel,et al.  Elastic and Mechanical Properties of Polycrystalline Transparent Yttria as Determined by Indentation Techniques , 2010 .

[50]  P. L. Stark The United States geological survey website , 1997 .

[51]  Glykeria Kakali,et al.  Portland-limestone cements. Their properties and hydration compared to those of other composite cements , 2005 .

[52]  Kenneth A. Snyder,et al.  Doubling the service life of concrete structures. II: Performance of nanoscale viscosity modifiers in mortars , 2010 .

[53]  Karen L. Scrivener,et al.  Innovation in use and research on cementitious material , 2008 .

[54]  H. Houari,et al.  OPTIMAL CRITERIA OF ALGERIAN BLENDED CEMENT USING LIMESTONE FINES/ALŽYRIETIŠKAS MIŠRUSIS CEMENTAS SU MALTU KALKAKMENIU , 2008 .

[55]  P. Balaguru,et al.  FIRE RESISTANT ALUMINOSILICATE COMPOSITES , 1997 .

[56]  A. Loukili,et al.  Chemical shrinkage of cement pastes and mortars at very early age : Effect of limestone filler and granular inclusions , 2008 .

[57]  H. Wu,et al.  Transition from brittle to ductile behavior of fly ash using PVA fibers , 2008 .

[58]  J. Deventer,et al.  Geopolymerisation kinetics. 3. Effects of Cs and Sr salts , 2008 .

[59]  P. Balaguru,et al.  Comparative study of high temperature composites , 2001 .

[60]  Tiesong Lin,et al.  In situ crack growth observation and fracture behavior of short carbon fiber reinforced geopolymer matrix composites , 2010 .

[61]  Eddie,et al.  Impact properties of geopolymer based extrudates incorporated with fly ash and PVA short fiber , 2008 .

[62]  Victor C. Li,et al.  New Micromechanics Design Theory for Pseudostrain Hardening Cementitious Composite , 1999 .

[63]  Jinyu Xu,et al.  Impact characterization of basalt fiber reinforced geopolymeric concrete using a 100-mm-diameter split Hopkinson pressure bar , 2009 .

[64]  Michael D. Lepech,et al.  Water permeability of engineered cementitious composites , 2009 .

[65]  Tiesong Lin,et al.  Effects of fiber length on mechanical properties and fracture behavior of short carbon fiber reinforced geopolymer matrix composites , 2008 .

[66]  Jinyu Xu,et al.  Mechanical properties of basalt fiber reinforced geopolymeric concrete under impact loading , 2009 .

[67]  Carlos Perez Bergmann,et al.  Thermal insulators made with rice husk ashes: Production and correlation between properties and microstructure , 2007 .

[68]  R. Siddique,et al.  Influence of metakaolin on the properties of mortar and concrete: A review , 2009 .

[69]  Maria S. Konsta-Gdoutos,et al.  Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites , 2010 .

[70]  Kostas Komnitsas,et al.  Geopolymerisation: A review and prospects for the minerals industry , 2007 .

[71]  Victor C. Li,et al.  Cracking and Healing of Engineered Cementitious Composites under Chloride Environment , 2011 .

[72]  Perumalsamy N. Balaguru,et al.  Novel geopolymer based composites with enhanced ductility , 2007 .

[73]  Dubravka Bjegović,et al.  Role of mineral additions in reducing CO2 emission , 2005 .

[74]  Zuhua Zhang,et al.  Potential application of geopolymers as protection coatings for marine concrete II. Microstructure and anticorrosion mechanism , 2010 .

[75]  Velu Saraswathy,et al.  Estimation of the permeability of silica fume cement concrete , 2010 .

[76]  R. Swamy,et al.  The thaumasite form of sulfate attack in Portland-limestone cement mortars stored in magnesium sulfate solution , 2002 .

[77]  L. Price,et al.  CARBON DIOXIDE EMISSIONS FROM THE GLOBAL CEMENT INDUSTRY , 2001 .

[78]  Xiao Yao,et al.  Potential application of geopolymers as protection coatings for marine concrete I. Basic properties , 2010 .

[79]  H. Engqvist,et al.  Mechanically strong geopolymers offer new possibilities in treatment of chronic pain. , 2010, Journal of controlled release : official journal of the Controlled Release Society.

[80]  Zhao Youcai,et al.  Characterization of heavy metals in fly ash from municipal solid waste incinerators in Shanghai , 2010 .

[81]  S. V. D. Zwaag Self healing materials : an alternative approach to 20 centuries of materials science , 2007 .

[82]  Carmen Andrade,et al.  Corrosion Resistance Performance of Steel-Reinforced Engineered Cementitious Composite Beams , 2008 .

[83]  Duncan Herfort,et al.  Sustainable Development and Climate Change Initiatives , 2008 .

[84]  Yun Mook Lim,et al.  DURABLE REPAIR OF AGED INFRASTRUCTURES USING TRAPPING MECHANISM OF ENGINEERED CEMENTITIOUS COMPOSITES , 1997 .

[85]  P. L. Pratt,et al.  Factors affecting the strength of alkali-activated slag , 1994 .

[86]  J. Deventer,et al.  Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products. , 2007, Journal of hazardous materials.

[87]  John L. Provis,et al.  The mechanism of geopolymer gel formation investigated through seeded nucleation , 2008 .

[88]  D. Bentz Modeling the influence of limestone filler on cement hydration using CEMHYD3D , 2006 .

[89]  V. Li,et al.  TENSILE STRAIN-HARDENING BEHAVIOR OF POLYVINYL ALCOHOL ENGINEERED CEMENTITIOUS COMPOSITE (PVA-ECC) , 2001 .

[90]  Sudong Hua,et al.  Preparation and mechanical properties of polypropylene fiber reinforced calcined kaolin-fly ash based geopolymer , 2009 .

[91]  John L. Provis,et al.  The role of particle technology in developing sustainable construction materials , 2010 .

[92]  V. Li On Engineered Cementitious Composites (ECC) , 2003 .

[93]  Longtu Li,et al.  A review: The comparison between alkali-activated slag (Si + Ca) and metakaolin (Si + Al) cements , 2010 .

[94]  J. Gomes,et al.  Lixiviación de metales pesados a partir de escorias de acero , 2006 .

[95]  X. Querol,et al.  Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-)combustion fly ashes. , 2008, Journal of hazardous materials.

[96]  M. Barsoum,et al.  Chemical and Microstructural Characterization of 20‐Month‐Old Alkali‐Activated Slag Cements , 2010 .

[97]  En-Hua Yang,et al.  Self Healing in Concrete Materials , 2007 .

[98]  J. Deventer,et al.  Geopolymer technology: the current state of the art , 2007 .

[99]  J. R. Dyni,et al.  GEOLOGY AND RESOURCES OF SOME WORLD OIL-SHALE DEPOSITS , 2003, Oil Shale.

[100]  Martin A. Abraham,et al.  Sustainability science and engineering : defining principles , 2006 .

[101]  Dale P. Bentz,et al.  Influence of silica fume on diffusivity in cement-based materials: I. Experimental and computer modeling studies on cement pastes , 2000 .

[102]  G. A. Keoleian,et al.  An integrated life cycle assessment and life cycle analysis model for pavement overlay systems , 2008 .

[103]  Yunsheng Zhang,et al.  Short Fiber Reinforced Geopolymer Composites Manufactured by Extrusion , 2005 .

[104]  Z Guemmadi,et al.  Modeling the Influence of Limestone Filler on Concrete: A Novel Approach for Strength and Cost , 2009 .

[105]  B. V. Venkatarama Reddy,et al.  Embodied energy of common and alternative building materials and technologies , 2003 .

[106]  Michael D. Lepech,et al.  Field Demonstration of Durable Link Slabs for Jointless Bridge Decks Based on Strain-Hardening Cementitious Composites , 2003 .

[107]  Zhang Yunsheng,et al.  Impact behavior and microstructural characteristics of PVA fiber reinforced fly ash-geopolymer boards prepared by extrusion technique , 2006 .

[108]  D. Bentz,et al.  Doubling the service life of concrete structures. I: Reducing ion mobility using nanoscale viscosity modifiers , 2008 .

[109]  Rubina Chaudhary,et al.  Mechanism of geopolymerization and factors influencing its development: a review , 2007 .

[110]  J. Phair Green chemistry for sustainable cement production and use , 2006 .

[111]  Cecilia M. Briceno-Garmendia,et al.  Africa's Infrastructure: A Time for Transformation , 2009 .