Fast detection of differential chromatin domains with SCIDDO

The generation of genome-wide maps of histone modifications using chromatin immunoprecipitation sequencing (ChIP-seq) is a common approach to dissect the complexity of the epigenome. However, interpretation and differential analysis of histone ChIP-seq datasets remains challenging due to the genomic co-occurrence of several marks and their difference in genomic spread. Here we present SCIDDO, a fast statistical method for the detection of differential chromatin domains (DCDs) from chromatin state maps. DCD detection simplifies relevant tasks such as the characterization of chromatin changes in differentially expressed genes or the examination of chromatin dynamics at regulatory elements. SCIDDO is available at github.com/ptrebert/sciddo

[1]  Michael Q. Zhang,et al.  Integrative analysis of 111 reference human epigenomes , 2015, Nature.

[2]  Dustin E. Schones,et al.  High-Resolution Profiling of Histone Methylations in the Human Genome , 2007, Cell.

[3]  Marc D. Perry,et al.  ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia , 2012, Genome research.

[4]  Madapura M. Pradeepa,et al.  Causal role of histone acetylations in enhancer function , 2016, Transcription.

[5]  A. Valencia,et al.  Automatic identification of informative regions with epigenomic changes associated to hematopoiesis , 2016, bioRxiv.

[6]  D. Bartel,et al.  Predicting effective microRNA target sites in mammalian mRNAs , 2015, eLife.

[7]  Oliver Brüstle,et al.  Leveling Waddington: the emergence of direct programming and the loss of cell fate hierarchies , 2013, Nature Reviews Molecular Cell Biology.

[8]  Raymond K. Auerbach,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[9]  Kevin C. Chen,et al.  Spectacle: fast chromatin state annotation using spectral learning , 2015, Genome Biology.

[10]  E. Lander,et al.  The Mammalian Epigenome , 2007, Cell.

[11]  ENCODEConsortium,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[12]  Jianhua Lin,et al.  Divergence measures based on the Shannon entropy , 1991, IEEE Trans. Inf. Theory.

[13]  Doron Lancet,et al.  GeneHancer: genome-wide integration of enhancers and target genes in GeneCards , 2017, Database J. Biol. Databases Curation.

[14]  Selin Jessa,et al.  chromswitch: a flexible method to detect chromatin state switches , 2018, Bioinform..

[15]  Manolis Kellis,et al.  Large-scale epigenome imputation improves data quality and disease variant enrichment , 2015, Nature Biotechnology.

[16]  W. Reik,et al.  Epigenetic dynamics of stem cells and cell lineage commitment: digging Waddington's canal , 2009, Nature Reviews Molecular Cell Biology.

[17]  Peter A. Jones,et al.  The Epigenomics of Cancer , 2007, Cell.

[18]  Maureen A. Sartor,et al.  PePr: a peak-calling prioritization pipeline to identify consistent or differential peaks from replicated ChIP-Seq data , 2014, Bioinform..

[19]  Danny Reinberg,et al.  A double take on bivalent promoters. , 2013, Genes & development.

[20]  P. Flicek,et al.  The Ensembl Regulatory Build , 2015, Genome Biology.

[21]  S. Karlin,et al.  Applications and statistics for multiple high-scoring segments in molecular sequences. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[22]  R. Lowdon,et al.  Evolution of Epigenetic Regulation in Vertebrate Genomes. , 2016, Trends in genetics : TIG.

[23]  William Stafford Noble,et al.  Unsupervised pattern discovery in human chromatin structure through genomic segmentation , 2012, Nature Methods.

[24]  Aaron R. Quinlan,et al.  Bioinformatics Applications Note Genome Analysis Bedtools: a Flexible Suite of Utilities for Comparing Genomic Features , 2022 .

[25]  Julia A. Lasserre,et al.  Histone modification levels are predictive for gene expression , 2010, Proceedings of the National Academy of Sciences.

[26]  M. Robinson,et al.  Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences , 2015, F1000Research.

[27]  Steven J. M. Jones,et al.  The International Human Epigenome Consortium: A Blueprint for Scientific Collaboration and Discovery , 2016, Cell.

[28]  Timothy J. Durham,et al.  Systematic analysis of chromatin state dynamics in nine human cell types , 2011, Nature.

[29]  A. Visel,et al.  ChIP-seq accurately predicts tissue-specific activity of enhancers , 2009, Nature.

[30]  Manolis Kellis,et al.  ChromHMM: automating chromatin-state discovery and characterization , 2012, Nature Methods.

[31]  Walter L. Ruzzo,et al.  A Linear Time Algorithm for Finding All Maximal Scoring Subsequences , 1999, ISMB.

[32]  G. Orphanides,et al.  A Unified Theory of Gene Expression , 2002, Cell.

[33]  Nathaniel D. Heintzman,et al.  Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome , 2007, Nature Genetics.

[34]  Ho-Ryun Chung,et al.  Chromatin segmentation based on a probabilistic model for read counts explains a large portion of the epigenome , 2015, Genome Biology.

[35]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[36]  T. Mikkelsen,et al.  Genome-wide maps of chromatin state in pluripotent and lineage-committed cells , 2007, Nature.

[37]  Data production leads,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[38]  R. Young,et al.  Histone H3K27ac separates active from poised enhancers and predicts developmental state , 2010, Proceedings of the National Academy of Sciences.

[39]  Manolis Kellis,et al.  Systematic chromatin state comparison of epigenomes associated with diverse properties including sex and tissue type , 2015, Nature Communications.

[40]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[41]  Edwin Cuppen,et al.  Sambamba: fast processing of NGS alignment formats , 2015, Bioinform..

[42]  B. Tjaden,et al.  De novo assembly of bacterial transcriptomes from RNA-seq data , 2015, Genome Biology.

[43]  Rob Patro,et al.  Salmon provides fast and bias-aware quantification of transcript expression , 2017, Nature Methods.

[44]  F. van Nieuwerburgh,et al.  Library construction for next-generation sequencing: overviews and challenges. , 2014, BioTechniques.

[45]  William R Pearson,et al.  Selecting the Right Similarity‐Scoring Matrix , 2013, Current protocols in bioinformatics.

[46]  Jie Zhang,et al.  Practical Guidelines for the Comprehensive Analysis of ChIP-seq Data , 2013, PLoS Comput. Biol..

[47]  Bronwen L. Aken,et al.  GENCODE: The reference human genome annotation for The ENCODE Project , 2012, Genome research.

[48]  A. Dean,et al.  Enhancer function: mechanistic and genome-wide insights come together. , 2014, Molecular cell.

[49]  T. Kouzarides Chromatin Modifications and Their Function , 2007, Cell.

[50]  Stefan Wallner,et al.  Epigenetic dynamics of monocyte-to-macrophage differentiation , 2016, Epigenetics & Chromatin.

[51]  S. Karlin,et al.  Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Amir Dembo,et al.  Statistical Composition of High-Scoring Segments from Molecular Sequences , 1990 .

[53]  James A. Cuff,et al.  A Bivalent Chromatin Structure Marks Key Developmental Genes in Embryonic Stem Cells , 2006, Cell.

[54]  Thomas Lengauer,et al.  BLUEPRINT to decode the epigenetic signature written in blood , 2012, Nature Biotechnology.

[55]  A. Coulon,et al.  Eukaryotic transcriptional dynamics: from single molecules to cell populations , 2013, Nature Reviews Genetics.