Nonlocal anisotropic damage model and related computational aspects for quasi-brittle materials

Abstract A three-dimensional damage model with induced damage anisotropy is proposed for quasi-brittle materials such as concrete. The thermodynamics framework is used, considering then a single second-order tensorial damage variable whatever the intensity and the sign of the loading. The quasi-unilateral conditions of micro-cracks closure are written on the hydrostatic stress only. Altogether with the consideration of damage laws ensuring a damage rate proportional to the positive part of the strain tensor this is sufficient to model a strongly different behavior due to damage in tension and in compression. A proof of the positivity of the intrinsic dissipation due to such an induced anisotropic damage is given. An efficient scheme for the implementation of the damage model in commercial Finite Element codes is then detailed and numerical examples of structural failures are given. Plain concrete, reinforced and pre-stressed concrete structures are computed up to high damage level inducing yielding of the reinforcement steels. Local and nonlocal computations are performed. A procedure for the control of rupture is proposed. It is a key point making the computations with anisotropic damage truly efficient.

[1]  J. Mazars APPLICATION DE LA MECANIQUE DE L'ENDOMMAGEMENT AU COMPORTEMENT NON LINEAIRE ET A LA RUPTURE DU BETON DE STRUCTURE , 1984 .

[2]  Elias C. Aifantis,et al.  The physics of plastic deformation , 1987 .

[3]  Michael Ortiz,et al.  A constitutive theory for the inelastic behavior of concrete , 1985 .

[4]  S. Ramtani,et al.  Contribution à la modélisation du comportement multiaxial du béton endommage avec description du caractère unilatéral , 1990 .

[5]  Victor E. Saouma,et al.  3D nonlinear finite element/fracture mechanics analysis of pressurized nuclear reactor container ring , 2003 .

[6]  Eric Bourdarot,et al.  Poro-Damage Approach Applied to Hydro-Fracture Analysis of Concrete , 2000 .

[7]  Gilles Pijaudier-Cabot,et al.  Gurson ’ s plasticity coupled to damage as a CAP model for concrete compaction in dynamics , 2005 .

[8]  Mgd Marc Geers,et al.  Damage and crack modeling in single-edge and double-edge notched concrete beams , 2000 .

[9]  M. B. Nooru-Mohamed Mixed-mode fracture of concrete : An experimental approach , 1992 .

[10]  Gilles Pijaudier-Cabot,et al.  Measurement of Characteristic Length of Nonlocal Continuum , 1989 .

[11]  R. Desmorat,et al.  Modeling Microdefects Closure Effect with Isotropic/Anisotropic Damage , 2008 .

[12]  Wam Marcel Brekelmans,et al.  Comparison of nonlocal approaches in continuum damage mechanics , 1995 .

[13]  Z. Bažant,et al.  Nonlocal microplane model for fracture, damage, and size effect in structures , 1990 .

[14]  Alberto Taliercio,et al.  Anisotropic damage model for the multiaxial static and fatigue behaviour of plain concrete , 1996 .

[15]  C. L. Chow,et al.  An anisotropic theory of elasticity for continuum damage mechanics , 1987 .

[16]  George Z. Voyiadjis,et al.  Plasticity model for concrete using the bounding surface concept , 1994 .

[17]  Milan Jirásek,et al.  Consistent tangent stiffness for nonlocal damage models , 2002 .

[18]  Ahmed Benallal,et al.  An integration algorithm and the corresponding consistent tangent operator for fully coupled elastoplastic and damage equations , 1988 .

[19]  Sumio Murakami,et al.  Constitutive and damage evolution equations of elastic-brittle materials based on irreversible thermodynamics , 1997 .

[20]  Byung H. Oh,et al.  Microplane Model for Progressive Fracture of Concrete and Rock , 1985 .

[21]  D. Halm,et al.  An anisotropic model of damage and frictional sliding for brittle materials , 1998 .

[22]  Gilles Pijaudier-Cabot,et al.  Isotropic and anisotropic descriptions of damage in concrete structures , 1999 .

[23]  L. Resende,et al.  A damage mechanics constitutive theory for the inelastic behaviour of concrete , 1987 .

[24]  Rhj Ron Peerlings,et al.  Gradient enhanced damage for quasi-brittle materials , 1996 .

[25]  Frédéric Ragueneau,et al.  Mechanical behaviour related to continuum damage mechanics for concrete , 2003 .

[26]  J. Lemaitre,et al.  Mécanique des matériaux solides , 1996 .

[27]  Frederick A. Leckie,et al.  Tensorial Nature of Damage Measuring Internal Variables , 1981 .

[28]  Jian-Fu Shao,et al.  Modeling of elastoplastic damage behavior of a claystone , 2003 .

[29]  Pere C. Prat,et al.  Microplane Model for Brittle-Plastic Material: I. Theory , 1988 .

[30]  A. Dragon,et al.  Modélisation de l'endommagement par mésofissuration : comportement unilatéral et anisotropie induite , 1996 .

[31]  Z. Bažant,et al.  CRACK SHEAR IN CONCRETE: CRACK BAND MICROPLANE MODEL , 1984 .

[32]  Milan Jirásek,et al.  Embedded crack model. Part II: combination with smeared cracks , 2001 .

[33]  J. Ju,et al.  On energy-based coupled elastoplastic damage theories: Constitutive modeling and computational aspects , 1989 .

[34]  Sia Nemat-Nasser,et al.  Overall moduli of solids with microcracks: Load-induced anisotropy , 1983 .

[35]  J. Mazars,et al.  The unilateral behaviour of damaged concrete , 1990 .

[36]  J. Lemaître,et al.  Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures , 2005 .

[37]  Zdenek P. Bazant,et al.  Microplane Model for Brittle‐Plastic Material: II. Verification , 1988 .

[38]  Roman Lackner,et al.  An anisotropic elastoplastic‐damage model for plain concrete , 1998 .

[39]  A. Huerta,et al.  Finite element analysis of bifurcation in nonlocal strain softening solids , 1991 .

[40]  Jean-Louis Chaboche,et al.  Development of Continuum Damage Mechanics for Elastic Solids Sustaining Anisotropic and Unilateral Damage , 1993 .

[41]  Surendra P. Shah,et al.  Mechanical Behavior of Fiber-Reinforced Cement-Based Composites , 1991 .

[42]  R. Desmorat Positivité de la dissipation intrinsèque d'une classe de modèles d'endommagement anisotropes non standards , 2006 .

[43]  Dusan Krajcinovic,et al.  Continuous Damage Mechanics Revisited: Basic Concepts and Definitions , 1985 .

[44]  Quoc Son Nguyen,et al.  Sur les matériaux standard généralisés , 1975 .

[45]  S. Murakami,et al.  Mechanical Modeling of Material Damage , 1988 .

[46]  Jean Lemaitre,et al.  Anisotropic damage law of evolution , 2000 .

[47]  F. Leckie A course on damage mechanics , 1998 .

[48]  S. Xia,et al.  A nonlocal damage theory , 1987 .