An overview of the theory of hydrocodes

Abstract Hydrocodes are large computer programs that can be used to simulate numerically highly dynamic events, particularly those which include shocks. Lagrangian and Eulerian descriptions are reviewed, and advantages and disadvantages are summarized. The question of how to best represent the continuum equations on a finite computer is answered by summarizing the topics of accuracy and stability. The concept of artificial viscosity is introduced to permit the continuum code to deal with the discontinuities of shocks. Finally, a review of the treatment of materials, i.e., equation of state and constitutive response, including failure, is presented.

[1]  D. E. Grady,et al.  On a criterion for thermo‐plastic shear instability , 1982 .

[2]  B. M. Butcher,et al.  A criterion for the time dependence of dynamic fracture , 1968 .

[3]  J. O. Hallquist,et al.  Recent developments in large-scale finite-element Lagrangian hydrocode technology. [Dyna 20/dyna 30 computer code] , 1981 .

[4]  Lee Davison,et al.  Thermomechanical constitution of spalling elastic bodies , 1973 .

[5]  G. I. Kerley,et al.  Theoretical equation of state for aluminum , 1987 .

[6]  R. D. Richtmyer,et al.  Difference methods for initial-value problems , 1959 .

[7]  Albert C. Holt,et al.  Static and Dynamic Pore‐Collapse Relations for Ductile Porous Materials , 1972 .

[8]  G. R. Johnson,et al.  Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures , 1985 .

[9]  Lynn Seaman,et al.  Computational models for ductile and brittle fracture , 1976 .

[10]  W. Herrmann Constitutive Equation for the Dynamic Compaction of Ductile Porous Materials , 1969 .

[11]  G. R. Johnson,et al.  Status of the EPIC Codes, Material Characterization and New Computing Concepts at Honeywell , 1983 .

[12]  T. Belytschko,et al.  Efficient large scale non‐linear transient analysis by finite elements , 1976 .

[13]  M. E. Kipp,et al.  Theory of spall damage accumulation in ductile metals , 1977 .

[14]  J. Zukas,et al.  Impact Dynamics: Theory and Experiment , 1980 .

[15]  Timothy G. Trucano,et al.  Effects of vaporization on debris cloud dynamics , 1987 .

[16]  L J Hageman,et al.  Incorporation of the NAG-FRAG Model for Ductile and Brittle Fracture into Help, a 2D Multimaterial Eulerian Program , 1978 .

[17]  Samuel W. Key,et al.  HONDO II: a finite element computer program for the large deformation dynamic response of axisymmetric solids. [HONDO] , 1978 .

[18]  J. A. Zukas,et al.  Mechanics of penetration: Analysis and experiment , 1978 .

[19]  Donald A. Shockey,et al.  Damage in steel plates from hypervelocity impact. I. Physical changes and effects of projectile material , 1975 .

[20]  J. Mescall,et al.  Spallation in cylinder-plate impact , 1974 .

[21]  G. R. Johnson,et al.  Three-dimensional computer code for dynamic response of solids to intense impulsive loads , 1979 .

[22]  T. G. Trucano,et al.  INTERMEDIATE VELOCITY PENETRATION OF STEEL SPHERES INTO DEEP ALUMINUM TARGETS**This work performed at Sandia National Laboratories supported by the U. S. Department of Energy under contract number DE-AC04-76DP00789. , 1984 .

[23]  David Potter Computational physics , 1973 .

[24]  F. B. Hildebrand Advanced Calculus for Applications , 1962 .

[25]  Willis Mock,et al.  Fragmentation behavior of Armco iron and HF‐1 steel explosive‐filled cylinders , 1983 .

[26]  Kent D. Kimsey,et al.  Contact Surface Erosion for Hypervelocity Problems , 1986 .

[27]  G. R. Johnson,et al.  EPIC-3, a Computer Program for Elastic-Plastic Impact Calculations in 3 Dimensions , 1977 .

[28]  Samuel W. Key,et al.  A finite element procedure for the large deformation dynamic response of axisymmetric solids , 1974 .

[29]  J. W. Swegle,et al.  Shock viscosity and the prediction of shock wave rise times , 1985 .

[30]  P. Lax Weak solutions of nonlinear hyperbolic equations and their numerical computation , 1954 .

[31]  J. H. Tillotson METALLIC EQUATIONS OF STATE FOR HYPERVELOCITY IMPACT , 1962 .

[32]  J. N. Fritz,et al.  CHAPTER VII – THE EQUATION OF STATE OF SOLIDS FROM SHOCK WAVE STUDIES , 1970 .

[33]  Willis Mock,et al.  Determination of dynamic fracture parameters for HF‐1 steel , 1982 .

[34]  D. S. Drumheller,et al.  Hypervelocity impact of mixtures , 1987 .

[35]  M. E. Kipp,et al.  WONDY V: a one-dimensional finite-difference wave-propagation code , 1982 .

[36]  P. Lax,et al.  Systems of conservation laws , 1960 .

[37]  Ted Belytschko,et al.  A three-dimensional impact-penetration algorithm with erosion , 1987 .

[38]  R. D. Richtmyer,et al.  A Method for the Numerical Calculation of Hydrodynamic Shocks , 1950 .

[39]  R. Becker,et al.  Stoßwelle und Detonation , 1922 .

[40]  M. Wilkins Calculation of Elastic-Plastic Flow , 1963 .

[41]  R. Graham,et al.  Shock compression of solids , 1979 .

[42]  Ashley F. Emery,et al.  An Evaluation of Several Differencing Methods for Inviscid Fluid Flow Problems , 1968 .

[43]  Albert C. Holt,et al.  Suggested Modification of the P‐α Model for Porous Materials , 1972 .

[44]  R. T. Sedgwick,et al.  Numerical investigations in penetration mechanics , 1978 .

[45]  R. K. Byers,et al.  Damage in steel plates from hypervelocity impact. II. Numerical results and spall measurement , 1975 .

[46]  W. Herrmann,et al.  STRAIN HARDENING AND STRAIN RATE IN ONE-DIMENSIONAL WAVE PROPAGATION CALCULATIONS. , 1970 .

[47]  Lee Davison NUMERICAL MODELING OF DYNAMIC MATERIAL RESPONSE , 1984 .

[48]  Ted Belytschko,et al.  A New Interaction Algorithm with Erosion for EPIC-3 , 1985 .

[49]  R. Mcqueen,et al.  Compression of Solids by Strong Shock Waves , 1958 .

[50]  G. R. Johnson,et al.  Eroding interface and improved tetrahedral element algorithms for high-velocity impact computations in three dimensions , 1987 .

[51]  J. M. Kennedy,et al.  Hourglass control in linear and nonlinear problems , 1983 .

[52]  S. P. Gill,et al.  Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena , 2002 .

[53]  R. D. Richtmyer,et al.  Survey of the stability of linear finite difference equations , 1956 .

[54]  Mark L. Wilkins,et al.  Mechanics of penetration and perforation , 1978 .

[55]  B E Ringers,et al.  New Sliding Surface Techniques Enable the Simulation of Target Plugging Failure , 1983 .

[56]  Lynn Seaman,et al.  Development and Application of a Computational Shear Band Model. , 1980 .

[57]  James R. Asay,et al.  The response of materials to dynamic loading , 1987 .

[58]  G. R. Johnson High Velocity Impact Calculations in Three Dimensions , 1977 .

[59]  K. S. Holian,et al.  Sensitivity of hypervelocity impact simulations to equation of State , 1987 .

[60]  G. R. Johnson Analysis of Elastic-Plastic Impact Involving Severe Distortions , 1976 .

[61]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .