Solution processed organic double light-emitting layer diode based on cross-linkable small molecular systems.

[1]  Bernard Geffroy,et al.  Organic light‐emitting diode (OLED) technology: materials, devices and display technologies , 2006 .

[2]  P. Chou,et al.  Synthesis, structures, and photoinduced electron transfer reaction in the 9,9'-spirobifluorene-bridged bipolar systems. , 2006, The Journal of organic chemistry.

[3]  Xiang Zhou,et al.  High-efficiency electrophosphorescent organic light-emitting diodes with double light-emitting layers , 2002 .

[4]  Junji Kido,et al.  Thermally cross-linkable host materials for enabling solution-processed multilayer stacks in organic light-emitting devices , 2013 .

[5]  Daniel Moses,et al.  Multilayer Polymer Light‐Emitting Diodes: White‐Light Emission with High Efficiency , 2005 .

[6]  S. Forrest,et al.  Nearly 100% internal phosphorescence efficiency in an organic light emitting device , 2001 .

[7]  J. Salbeck,et al.  Spiro Compounds for Organic Electroluminescence and Related Applications , 2006 .

[8]  A. Monkman,et al.  Dopant Effect on the Charge Injection, Transport, and Device Efficiency of an Electrophosphorescent Polymeric Light‐Emitting Device , 2006 .

[9]  Changsheng Shi,et al.  Solution-processable small molecules as efficient universal bipolar host for blue, green and red phosphorescent inverted OLEDs , 2012 .

[10]  I. Samuel,et al.  High power efficiency phosphorescent poly(dendrimer) OLEDs. , 2012, Optics express.

[11]  Begoña Milián‐Medina,et al.  Computational design of low singlet–triplet gap all-organic molecules for OLED application , 2012 .

[12]  Karsten Walzer,et al.  Triplet-exciton quenching in organic phosphorescent light-emitting diodes with Ir-based emitters , 2007 .

[13]  Klaus Meerholz,et al.  Multi-colour organic light-emitting displays by solution processing , 2003, Nature.

[14]  Markus S. Gross,et al.  Efficient blue organic light-emitting diodes with graded hole-transport layers. , 2000, Chemphyschem : a European journal of chemical physics and physical chemistry.

[15]  M. Mizukami,et al.  Efficient electrophosphorescent polymer light-emitting devices using a Cs/Al cathode , 2004 .

[16]  S. Forrest,et al.  Highly efficient phosphorescent emission from organic electroluminescent devices , 1998, Nature.

[17]  Dieter Neher,et al.  Highly Efficient Single‐Layer Polymer Electrophosphorescent Devices , 2004 .

[18]  Ruth E. Harding,et al.  Solution‐Processible Phosphorescent Blue Dendrimers Based on Biphenyl‐Dendrons and Fac‐tris(phenyltriazolyl)iridium(III) Cores , 2008 .

[19]  Bo Qu,et al.  Recent Progresses on Materials for Electrophosphorescent Organic Light‐Emitting Devices , 2011, Advanced materials.

[20]  D. Hertel,et al.  Triplet-polaron quenching in conjugated polymers. , 2007, The journal of physical chemistry. B.

[21]  Josef Salbeck,et al.  Spiro compounds for organic optoelectronics. , 2007, Chemical reviews.

[22]  S. Tokito,et al.  Highly efficient and stable organic light-emitting diode using 4,4′-bis(N-carbazolyl)-9,9′-spirobifluorene as a thermally stable host material , 2009 .

[23]  Yi‐Hung Liu,et al.  An unprecedented ambipolar charge transport material exhibiting balanced electron and hole mobilities. , 2007, Chemical communications.

[24]  Klaus Meerholz,et al.  Crosslinkable TAPC‐Based Hole‐Transport Materials for Solution‐Processed Organic Light‐Emitting Diodes with Reduced Efficiency Roll‐Off , 2013 .

[25]  Fei Huang,et al.  Materials and Devices toward Fully Solution Processable Organic Light-Emitting Diodes† , 2011 .

[26]  Malte C. Gather,et al.  Solution‐Processed Full‐Color Polymer Organic Light‐Emitting Diode Displays Fabricated by Direct Photolithography , 2007 .

[27]  A. Monkman,et al.  On the triplet state of poly(N-vinylcarbazole) , 2004 .

[28]  Stephen R. Forrest,et al.  Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet-triplet annihilation , 2000 .

[29]  Chunmiao Han,et al.  Harmonizing Triplet Level and Ambipolar Characteristics of Wide-Gap Phosphine Oxide Hosts toward Highly Efficient and Low Driving Voltage Blue and Green PHOLEDs: An Effective Strategy Based on Spiro-Systems , 2011 .

[30]  F. So,et al.  Highly efficient solution processed blue organic electrophosphorescence with 14lm∕W luminous efficacy , 2006 .

[31]  Klaus Meerholz,et al.  Highly Efficient Polymeric Electrophosphorescent Diodes , 2006 .

[32]  S. Jeon,et al.  Theoretical maximum quantum efficiency in red phosphorescent organic light-emitting diodes at a low doping concentration using a spirobenzofluorene type triplet host material , 2010 .

[33]  Xun He,et al.  Simple CBP isomers with high triplet energies for highly efficient blue electrophosphorescence , 2012 .

[34]  Biwu Ma,et al.  Multifunctional Crosslinkable Iridium Complexes as Hole Transporting/Electron Blocking and Emitting Materials for Solution‐Processed Multilayer Organic Light‐Emitting Diodes , 2009 .

[35]  O. Nuyken,et al.  Vernetzbare Lochleiter für blau phosphoreszierende organische Leuchtdioden , 2007 .

[36]  Hartmut Yersin,et al.  Triplet emitters for OLED applications. Mechanisms of exciton trapping and control of emission properties , 2004 .

[37]  J. Kido,et al.  Solution-processable carbazole-based host materials for phosphorescent organic light-emitting devices , 2012 .

[38]  Bernard Kippelen,et al.  Crosslinking Using Rapid Thermal Processing for the Fabrication of Efficient Solution‐Processed Phosphorescent Organic Light‐Emitting Diodes , 2013, Advanced materials.

[39]  Yong Cao,et al.  Highly efficient electrophosphorescent devices based on conjugated polymers doped with iridium complexes , 2002 .

[40]  Th. Förster Zwischenmolekulare Energiewanderung und Fluoreszenz , 1948 .

[41]  D. Hertel,et al.  Luminescent Neutral Platinum Complexes Bearing an Asymmetric N^N^N Ligand for High‐Performance Solution‐Processed OLEDs , 2013, Advanced materials.

[42]  Influence of hole transport units on the efficiency of polymer light emitting diodes , 2007 .

[43]  Ying Zheng,et al.  Effects of triplet energies and transporting properties of carrier transporting materials on blue phosphorescent organic light emitting devices , 2008 .

[44]  S. Forrest,et al.  VERY HIGH-EFFICIENCY GREEN ORGANIC LIGHT-EMITTING DEVICES BASED ON ELECTROPHOSPHORESCENCE , 1999 .

[45]  Samson A. Jenekhe,et al.  High-performance multilayered phosphorescent OLEDs by solution-processed commercial electron-transport materials , 2012 .

[46]  Andreas F. Rausch,et al.  The triplet state of organo-transition metal compounds. Triplet harvesting and singlet harvesting for efficient OLEDs , 2011 .

[47]  Hyun Jun Lee,et al.  Role of n-dopant based electron injection layer in n-doped organic light-emitting diodes and its simple alternative , 2012 .

[48]  D. L. Dexter A Theory of Sensitized Luminescence in Solids , 1953 .

[49]  Klaus Meerholz,et al.  New crosslinkable hole conductors for blue-phosphorescent organic light-emitting diodes. , 2007, Angewandte Chemie.

[50]  Jun Yeob Lee,et al.  Organic Materials for Deep Blue Phosphorescent Organic Light‐Emitting Diodes , 2012, Advanced materials.

[51]  K. Meerholz,et al.  Novel non-conjugated main-chain hole-transporting polymers for organic electronics application. , 2010, Macromolecular rapid communications.

[52]  K. Meerholz,et al.  Crosslinkable hole‐transport materials for preparation of multilayer organic light emitting devices by spin‐coating , 1999 .