Numerical analysis of the performance of a three-bladed vertical-axis turbine with active pitch control using a coupled unsteady Reynolds-averaged Navier-Stokes and actuator line model

[1]  G. Ferrara,et al.  Development of a desmodromic variable pitch system for hydrokinetic turbines , 2021, Energy Conversion and Management.

[2]  Giovanni Ferrara,et al.  Tailoring the actuator line theory to the simulation of Vertical-Axis Wind Turbines , 2021 .

[3]  U. Washington,et al.  Simulations of Intracycle Angular Velocity Control for a Crossflow Turbine , 2020, 2009.06085.

[4]  V. Venugopal,et al.  Numerical Model of a Vertical-Axis Cross-Flow Tidal Turbine , 2020, Volume 9: Ocean Renewable Energy.

[5]  V. Venugopal,et al.  Aerodynamic Analysis of a Two-Bladed Vertical-Axis Wind Turbine Using a Coupled Unsteady RANS and Actuator Line Model , 2020, Energies.

[6]  You‐lin Xu,et al.  Optimal blade pitch function and control device for high-solidity straight-bladed vertical axis wind turbines , 2019, Applied Energy.

[7]  P. Zeng,et al.  Performance of a straight-bladed vertical axis wind turbine with inclined pitch axes by wind tunnel experiments , 2019, Energy.

[8]  M. Zamani,et al.  Effect of solidity on the performance of variable-pitch vertical axis wind turbine , 2018, Energy.

[9]  Qing Song,et al.  Effect of Blade Pitch Angle on the Aerodynamic Characteristics of a Straight-bladed Vertical Axis Wind Turbine Based on Experiments and Simulations , 2018, Energies.

[10]  J. W. van Wingerden,et al.  Repetitive Pitch Control for Vertical Axis Wind Turbine , 2018, Journal of Physics: Conference Series.

[11]  I. M. Viola,et al.  Numerical investigation of vertical-axis tidal turbines with sinusoidal pitching blades , 2018 .

[12]  Kaprawi Sahim,et al.  Investigations on the Effect of Radius Rotor in Combined Darrieus-Savonius Wind Turbine , 2018 .

[13]  You‐lin Xu,et al.  Optimization of blade pitch in H-rotor vertical axis wind turbines through computational fluid dynamics simulations , 2018 .

[14]  Madhavan Vasudevan,et al.  Effect of airfoil and solidity on performance of small scale vertical axis wind turbine using three dimensional CFD model , 2017 .

[15]  T. Stoesser,et al.  An immersed boundary-based large-eddy simulation approach to predict the performance of vertical axis tidal turbines , 2017 .

[16]  Abdolrahim Rezaeiha,et al.  Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine , 2017 .

[17]  Angus Creech,et al.  Effects of Support Structures in an LES Actuator Line Model of a Tidal Turbine with Contra-Rotating Rotors , 2017 .

[18]  Peter Bachant,et al.  Effectiveness of two-dimensional CFD simulations for Darrieus VAWTs: a combined numerical and experimental assessment , 2017 .

[19]  M. J. Maghrebi,et al.  Variable pitch blades: An approach for improving performance of Darrieus wind turbine , 2016 .

[20]  M. Wosnik,et al.  Experimental Study of a Reference Model Vertical-Axis Cross-Flow Turbine , 2016, PloS one.

[21]  Takao Maeda,et al.  The influence of flow field and aerodynamic forces on a straight-bladed vertical axis wind turbine , 2016 .

[22]  M. Wosnik,et al.  Evaluation of Design & Analysis Code, CACTUS, for Predicting Crossflow Hydrokinetic Turbine Performance , 2016 .

[23]  Yingbin Liang,et al.  Blade pitch control of straight-bladed vertical axis wind turbine , 2016 .

[24]  Steven L. Brunton,et al.  Intracycle angular velocity control of cross-flow turbines , 2016, Nature Energy.

[25]  Peter Bachant,et al.  Actuator line modeling of vertical-axis turbines , 2016, 1605.01449.

[26]  M. Wosnik,et al.  Modeling the near-wake of a vertical-axis cross-flow turbine with 2-D and 3-D RANS , 2016, 1604.02611.

[27]  A. Borthwick Marine Renewable Energy Seascape , 2016 .

[28]  M. Wosnik,et al.  Effects of Reynolds Number on the Energy Conversion and Near-Wake Dynamics of a High Solidity Vertical-Axis Cross-Flow Turbine , 2016 .

[29]  J. Dabiri,et al.  A comparison of wake measurements in motor-driven and flow-driven turbine experiments , 2015 .

[30]  Peter Bachant,et al.  UNH-RVAT Reynolds number dependence experiment: Reduced dataset and processing code , 2015 .

[31]  A. E. Maguire,et al.  Simulations of an Offshore Wind Farm Using Large-Eddy Simulation and a Torque-Controlled Actuator Disc Model , 2014, Surveys in Geophysics.

[32]  Liang Zhang,et al.  Experimental research on tidal current vertical axis turbine with variable-pitch blades , 2014 .

[33]  Peter Bachant,et al.  Reynolds Number Dependence of Cross-Flow Turbine Performance and Near-Wake Characteristics , 2014 .

[34]  Maria Vahdati,et al.  Unsteady flow simulation of a vertical axis augmented wind turbine: A two-dimensional study , 2014 .

[35]  Peter Bachant,et al.  Performance and Near-Wake Measurements for a Vertical Axis Turbine at Moderate Reynolds Number , 2013 .

[36]  Per-Åge Krogstad,et al.  “Blind test” calculations of the performance and wake development for a model wind turbine , 2013 .

[37]  Carlos A. de Moura,et al.  The Courant-Friedrichs-Lewy (CFL) Condition: 80 Years After Its Discovery , 2012 .

[38]  Nasir Hayat,et al.  Vertical axis wind turbine – A review of various configurations and design techniques , 2012 .

[39]  Jonathan Charles Berg,et al.  Reference Model 2: %22Rev 0%22 Rotor Design. , 2011 .

[40]  Kevin W. McLaren,et al.  A NUMERICAL AND EXPERIMENTAL STUDY OF UNSTEADY LOADING OF HIGH SOLIDITY VERTICAL AXIS WIND TURBINES , 2011 .

[41]  Lorenzo Ferrari,et al.  A Model to Account for the Virtual Camber Effect in the Performance Prediction of an H-Darrieus VAWT Using the Momentum Models , 2011 .

[42]  Sander M. Calisal,et al.  Modeling of twin-turbine systems with vertical axis tidal current turbine: Part II—torque fluctuation , 2011 .

[43]  Sander M. Calisal,et al.  Three-dimensional effects and arm effects on modeling a vertical axis tidal current turbine , 2010 .

[44]  Sander M. Calisal,et al.  Modeling of twin-turbine systems with vertical axis tidal current turbines: Part I—Power output , 2010 .

[45]  John E. Quaicoe,et al.  Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review , 2009 .

[46]  Pierre-Elouan Réthoré,et al.  Wind Turbine Wake in Atmospheric Turbulence , 2009 .

[47]  Seung Jo Kim,et al.  Optimization of cycloidal water turbine and the performance improvement by individual blade control , 2009 .

[48]  S. H. Salter,et al.  Vertical-axis tidal-current generators and the Pentland Firth , 2007 .

[49]  C. Lang,et al.  Harnessing tidal energy takes new turn , 2003 .

[50]  M. Cichon,et al.  Energy and Climate Change , 1997, Energy Exploration & Exploitation.

[51]  P. Roache Perspective: A Method for Uniform Reporting of Grid Refinement Studies , 1994 .

[52]  D. I. Pullin,et al.  Merger and cancellation of strained vortices , 1989, Journal of Fluid Mechanics.

[53]  P. Fraunié,et al.  Water channel experiments of dynamic stall on Darrieus wind turbine blades , 1986 .

[54]  J. Deardorff A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers , 1970, Journal of Fluid Mechanics.

[55]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[56]  Ye Li,et al.  High-resolution numerical simulation of the performance of vertical axis wind turbines in urban area: Part I, wind turbines on the side of single building , 2021 .

[57]  G. Ferrara,et al.  An annotated database of low Reynolds aerodynamic coefficients for the NACA0018 airfoil , 2019, SECOND INTERNATIONAL CONFERENCE ON MATERIAL SCIENCE, SMART STRUCTURES AND APPLICATIONS: ICMSS-2019.

[58]  D. P. Houf Active Pitch Control of a Vertical Axis Wind Turbine: Enhancing performance in terms of power and loads including dynamic stall effects , 2016 .

[59]  M. Wosnik,et al.  Performance Measurements for a 1:6 Scale Model of the DOE Reference Model 2 (RM2) Cross-Flow Hydrokinetic Turbine. , 2016 .

[60]  W. Fruh,et al.  Alternative Energy and Shale Gas Encyclopedia , 2016 .

[61]  E. Dyachuk Aerodynamics of Vertical Axis Wind Turbines : Development of Simulation Tools and Experiments , 2015 .

[62]  Carlos A. de Moura,et al.  The Courant–Friedrichs–Lewy (CFL) Condition , 2013 .

[63]  A. Simonović,et al.  Numerical and Analytical Investigation of Vertical Axis Wind Turbine , 2013 .

[64]  Maria Vahdati,et al.  Unsteady flow simulation of a vertical axis wind turbine: a two-dimensional study , 2013 .

[65]  Herbert J. Sutherland,et al.  A retrospective of VAWT technology. , 2012 .

[66]  Sandia Report,et al.  Reference Model 2: "Rev 0" Rotor Design , 2011 .

[67]  Ye Li Modeling of twin-turbine systems with vertical axis tidal current turbines : Part I — Power output , 2010 .

[68]  C. Masson,et al.  An extended k–ε model for turbulent flow through horizontal-axis wind turbines , 2008 .

[69]  S. Mathew Wind Energy: Fundamentals, Resource Analysis and Economics , 2006 .

[70]  R. E. Sheldahl,et al.  Aerodynamic Characteristics of Seven Symmetrical Airfoil Sections Through 180-Degree Angle of Attack for Use in Aerodynamic Analysis of Vertical Axis Wind Turbines , 1981 .

[71]  Rohit Singh,et al.  Power Efficient Design of Multiplexer based Compressor using Adiabatic Logic , 2013 .