Controlling Correlations in Sliced Latin Hypercube Designs
暂无分享,去创建一个
[1] Dennis K. J. Lin,et al. Construction of sliced orthogonal Latin hypercube designs , 2013 .
[2] Jennifer Werfel,et al. Orthogonal Arrays Theory And Applications , 2016 .
[3] Jian-Feng Yang,et al. Construction of sliced (nearly) orthogonal Latin hypercube designs , 2014, J. Complex..
[4] Ronald L. Iman. Latin Hypercube Sampling , 2008 .
[5] A. Owen. Controlling correlations in latin hypercube samples , 1994 .
[6] Min-Qian Liu,et al. Resolvable orthogonal array-based uniform sliced Latin hypercube designs , 2014 .
[7] Kenny Q. Ye. Orthogonal Column Latin Hypercubes and Their Application in Computer Experiments , 1998 .
[8] Boxin Tang,et al. SELECTING LATIN HYPERCUBES USING CORRELATION CRITERIA , 1998 .
[9] Dennis K. J. Lin,et al. A construction method for orthogonal Latin hypercube designs , 2006 .
[10] Richard J. Beckman,et al. A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.
[11] Peter Z. G. Qian. Sliced Latin Hypercube Designs , 2012 .
[12] Stephen J. Wright,et al. Validating Sample Average Approximation Solutions with Negatively Dependent Batches , 2014, 1404.7208.
[13] Peter Z. G. Qian,et al. Making corrections to your proof , 2012 .
[14] Peter Z. G. Qian,et al. Maximin Sliced Latin Hypercube Designs with Application to Cross Validating Prediction Error , 2017 .
[15] Dennis K. J. Lin,et al. Construction of orthogonal Latin hypercube designs , 2009 .
[16] M. E. Johnson,et al. Minimax and maximin distance designs , 1990 .
[17] T. J. Mitchell,et al. Bayesian design and analysis of computer experiments: Use of derivatives in surface prediction , 1993 .
[18] Dennis K. J. Lin,et al. Sliced Latin hypercube designs via orthogonal arrays , 2014 .
[19] William A. Brenneman,et al. Optimal Sliced Latin Hypercube Designs , 2015, Technometrics.
[20] M. Stein. Large sample properties of simulations using latin hypercube sampling , 1987 .