Device design guidelines for nano-scale MuGFETs

The short-channel properties of multi-gate SOI MOSFETs (MuGFETs) are studied by numerical simulation. The evolution of characteristics such as DIBL, subthreshold slope, and threshold voltage roll-off is analyzed as a function of channel length, silicon film or fin thickness, gate dielectric thickness and dielectric constant, and as a function of the radius of curvature of the corners. The notion of an equivalent gate number is introduced. This number ranges from 2 for a double-gate device to 4 in a gate-all-around transistor. The equivalent gate number can be used in general equations to predict the absence or presence of short-channel effects. As a general rule, increasing the equivalent gate number improves the short-channel behavior of the devices. Similarly, increasing the radius of curvature of the corners improves the control of the channel region by the gate.

[1]  Jean-Pierre Colinge,et al.  Multiple-gate SOI MOSFETs , 2004 .

[2]  M. Pejovic,et al.  Creation and passivation of interface traps in irradiated MOS transistors during annealing at different temperatures , 1997 .

[3]  Bogdan Majkusiak,et al.  Semiconductor thickness effects in the double-gate SOI MOSFET , 1998 .

[4]  S. Hareland,et al.  Tri-Gate fully-depleted CMOS transistors: fabrication, design and layout , 2003, 2003 Symposium on VLSI Technology. Digest of Technical Papers (IEEE Cat. No.03CH37407).

[5]  Jean-Pierre Colinge,et al.  Multiple-gate SOI MOSFETs: device design guidelines , 2002 .

[6]  L. Dreeskornfeld,et al.  A comprehensive study of corner effects in tri-gate transistors , 2004, Proceedings of the 30th European Solid-State Circuits Conference (IEEE Cat. No.04EX850).

[7]  J. Plummer,et al.  Scaling theory for cylindrical, fully-depleted, surrounding-gate MOSFET's , 1997, IEEE Electron Device Letters.

[8]  V. Trivedi,et al.  Suppression of corner effects in triple-gate MOSFETs , 2003, IEEE Electron Device Letters.

[9]  R.V.H. Booth,et al.  Modeling of transconductance degradation and extraction of threshold voltage in thin oxide MOSFET's , 1987 .

[10]  J. Kavalieros,et al.  High performance fully-depleted tri-gate CMOS transistors , 2003, IEEE Electron Device Letters.

[11]  J. P. Colinge,et al.  Corner effect in multiple-gate SOI MOSFETs , 2003, 2003 IEEE International Conference on SOI.

[12]  N. Collaert,et al.  Analysis of the parasitic S/D resistance in multiple-gate FETs , 2005, IEEE Transactions on Electron Devices.

[13]  James D. Plummer,et al.  A simple model for threshold voltage of surrounding-gate MOSFET's , 1998 .

[14]  K. F. Lee,et al.  Scaling the Si MOSFET: from bulk to SOI to bulk , 1992 .

[15]  Y. Tosaka,et al.  Scaling theory for double-gate SOI MOSFET's , 1993 .

[16]  Jong-Tea Park,et al.  Pi-Gate SOI MOSFET , 2001, IEEE Electron Device Letters.

[17]  Y. Yeo,et al.  25 nm CMOS Omega FETs , 2002, Digest. International Electron Devices Meeting,.

[18]  Sorin Cristoloveanu,et al.  Ultimately thin SOI MOSFETs: special characteristics and mechanisms , 1999, 1999 IEEE International SOI Conference. Proceedings (Cat. No.99CH36345).

[19]  W. Xiong,et al.  Threshold voltage and subthreshold slope of multiple-gate SOI MOSFETs , 2003, IEEE Electron Device Letters.

[20]  Chenming Hu,et al.  Sub 50-nm FinFET: PMOS , 1999, International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318).

[21]  J. Colinge,et al.  Silicon-on-insulator 'gate-all-around device' , 1990, International Technical Digest on Electron Devices.

[22]  Tsu-Jae King,et al.  Improvement of FinFET electrical characteristics by hydrogen annealing , 2004, IEEE Electron Device Letters.