Suboptimal LQR-based spacecraft full motion control: Theory and experimentation

Abstract This work introduces a real time suboptimal control algorithm for six-degree-of-freedom spacecraft maneuvering based on a State-Dependent-Algebraic-Riccati-Equation (SDARE) approach and real-time linearization of the equations of motion. The control strategy is sub-optimal since the gains of the linear quadratic regulator (LQR) are re-computed at each sample time. The cost function of the proposed controller has been compared with the one obtained via a general purpose optimal control software, showing, on average, an increase in control effort of approximately 15%, compensated by real-time implementability. Lastly, the paper presents experimental tests on a hardware-in-the-loop six-degree-of-freedom spacecraft simulator, designed for testing new guidance, navigation, and control algorithms for nano-satellites in a one-g laboratory environment. The tests show the real-time feasibility of the proposed approach.

[1]  Paul Zarchan,et al.  Fundamentals of Kalman Filtering: A Practical Approach , 2001 .

[2]  Riccardo Bevilacqua,et al.  Fuel-Optimal Spacecraft Rendezvous with Hybrid On-Off Continuous and Impulsive Thrust , 2007 .

[3]  Li Jun,et al.  Design and Development of a 5-DOF Air-Bearing Spacecraft Simulator , 2009, 2009 International Asia Conference on Informatics in Control, Automation and Robotics.

[4]  Yaguang Yang,et al.  Analytic LQR Design for Spacecraft Control System Based on Quaternion Model , 2012 .

[5]  Xiaoping Yun,et al.  Autonomous Distributed Control Algorithm for Multiple Spacecraft in Close Proximity Operations , 2007 .

[6]  Mason A. Peck,et al.  An Air-Levitated Testbed for Flux Pinning Interactions at the Nanosatellite Scale , 2010 .

[7]  Zhihua Qu,et al.  A New Sub-Optimal Nonlinear Control Design Technique - SDARE , 1996 .

[8]  Riccardo Bevilacqua,et al.  A six-degree-of-freedom hardware-in-the-loop simulator for small spacecraft , 2014 .

[9]  Kelly D. Hammett,et al.  Controllability Issues in Nonlinear State-Dependent Riccati Equation Control , 1998 .

[10]  Riccardo Bevilacqua,et al.  Operational Capabilities of a Six Degrees of Freedom Spacecraft Simulator , 2013 .

[11]  Tayfun Çimen,et al.  Survey of State-Dependent Riccati Equation in Nonlinear Optimal Feedback Control Synthesis , 2012 .

[12]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[13]  Bong Wie,et al.  Space Vehicle Dynamics and Control, Second Edition , 2008 .

[14]  Riccardo Bevilacqua,et al.  Guidance Navigation and Control for Autonomous Multiple Spacecraft Assembly: Analysis and Experimentation , 2011 .

[15]  Sung Woo Kim,et al.  Hardware-In-the-Loop Simulations of spacecraft attitude synchronization using the State-Dependent Riccati Equation technique , 2013 .

[16]  R. Bevilacquaa,et al.  Online generation of quasi-optimal spacecraft rendezvous trajectories , 2008 .

[17]  Riccardo Bevilacqua,et al.  Development and experimentation of LQR/APF guidance and control for autonomous proximity maneuvers of multiple spacecraft , 2011 .

[18]  William W. Hager,et al.  Direct trajectory optimization and costate estimation of finite-horizon and infinite-horizon optimal control problems using a Radau pseudospectral method , 2011, Comput. Optim. Appl..

[19]  William W. Hager,et al.  A unified framework for the numerical solution of optimal control problems using pseudospectral methods , 2010, Autom..

[20]  O. Yakimenko,et al.  Optimal Rendezvous Trajectories of a Controlled Spacecraft and a Tumbling Object , 2011 .

[21]  Riccardo Bevilacqua,et al.  Ad Hoc Wireless Networking and Shared Computation for Autonomous Multirobot Systems , 2009, J. Aerosp. Comput. Inf. Commun..

[22]  Oleg A. Yakimenko,et al.  Online generation of quasi-optimal spacecraft rendezvous trajectories , 2009 .

[23]  Amit K. Sanyal,et al.  Dynamics and Control of a Six Degrees of Freedom Ground Simulator for Autonomous Rendezvous and Proximity Operation of Spacecraft , 2012 .

[24]  Richard G. Cobb,et al.  Fuel-Optimal Maneuvers for Constrained Relative Satellite Orbits , 2009 .

[25]  Riccardo Bevilacqua,et al.  Lyapunov-Based Thrusters' Selection for Spacecraft Control: Analysis and Experimentation , 2010 .

[26]  Michael A. Patterson,et al.  Direct Trajectory Optimization and Costate Estimation of General Optimal Control Problems Using a Radau Pseudospectral Method , 2009 .

[27]  Fred Roe,et al.  Simulation techniques for avionics systems - An introduction to a world class facility , 1996 .

[28]  Ou Ma,et al.  Optimal Control for Spacecraft to Rendezvous with a Tumbling Satellite in a Close Range , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[29]  Luke Walker,et al.  Automated Proximity Operations Using Image-Based Relative Navigation , 2012 .

[30]  Kelly D. Hammett Control of nonlinear systems via state feedback state-dependent Riccati equation techniques , 1997 .

[31]  Banavara N. Shashikanth,et al.  Optimal approach to and alignment with a rotating rigid body for capture , 2007 .

[32]  Bong Wie,et al.  Space Vehicle Dynamics and Control , 1998 .

[33]  E. F. Breitfeller,et al.  Micro-satellite ground test vehicle for proximity and docking operations development , 2001, 2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542).

[34]  Shawn B. McCamish,et al.  Distributed autonomous control of multiple spacecraft during close proximity operations , 2007 .

[35]  Huibert Kwakernaak,et al.  Linear Optimal Control Systems , 1972 .

[36]  S. Beatty Comparison of PD and LQR Methods for Spacecraft Attitude Control Using Star Trackers , 2006, 2006 World Automation Congress.

[37]  Panagiotis Tsiotras,et al.  A 5-dof Experimental Platform for Spacecraft Rendezvous and Docking , 2009 .

[38]  Riccardo Bevilacqua,et al.  Advances on a 6 Degrees of Freedom Testbed for Autonomous Satellites Operations , 2011 .