Synthesis, Structure, and Properties of Monazite, Pretulite, and Xenotime

### General characteristics Orthophosphate compounds of the type A(PO4) include the minerals monazite [RE(PO4) with RE = the light rare-earth ions, e.g., La, Ce, Nd…], xenotime [Y(PO4), and also incorporating the heavy RE ions], and pretulite [Sc(PO4)]. The name of the mineral monazite is derived from the Greek word monazein , “to be solitary,” whereas that of xenotime is derived from the Greek words xenos , meaning “foreign” and time , meaning “honor.” The mineral pretulite is named for Pretul Mountain, located in the Fischbacher Alps in Styria, Austria where the mineral was discovered (Bernhard et al. 1998). Pretulite is only the sixth mineral to have been found in which scandium is a major constituent. The anhydrous rare-earth (RE) orthophosphates can be structurally divided between the light RE-element compounds with the monoclinic monazite structure (space group P 21/ n , Z = 4) and the heavier RE compounds with the tetragonal (zircon-type) xenotime structure (space group I 41/ amd , Z = 4). In terms of the crystal chemistry of these two groups of compounds, a primary distinguishing structural feature is the coordination of the RE, Y, or Sc ions. In the monoclinic monazite structure, the RE ion is located in a polyhedron in which it is coordinated with nine oxygen ions. In the tetragonal xenotime structure, the heavier REs, Y, or Sc are located in a polyhedron in which they are coordinated with eight oxygen ions. Scandium orthophosphate is the basic constituent of the recently identified mineral, pretulite, which belongs to the orthophosphate group with the tetragonal xenotime structure (Bernhard et al. 1998). Both monazite and xenotime are relatively widely distributed as microcrystalline (or small crystalline) accessory inclusions in granitic rocks, rhyolites, pegmatites, and gneisses. Monazite also occurs in carbonatites, charnockites, migmatites, and …

[1]  L. Boatner,et al.  Contamination in the Rare-Earth Element Orthophosphate Reference Samples , 2002, Journal of research of the National Institute of Standards and Technology.

[2]  P. Dorenbos,et al.  LuPO4:Nd and YPO4:Nd—new promising VUV scintillation materials , 2002 .

[3]  P. Dorenbos,et al.  VUV scintillation of LuPO/sub 4/:Nd and YPO/sub 4/:Nd , 2001, 2001 IEEE Nuclear Science Symposium Conference Record (Cat. No.01CH37310).

[4]  Lynn A. Boatner,et al.  Thermochemistry of rare-earth orthophosphates , 2001 .

[5]  G. Jellison,et al.  Spectroscopic refractive indices of metalorthophosphates with the zircon-type structure , 2000 .

[6]  R. Ewing,et al.  A comparison of radiation effects in crystalline ABO4 -type phosphates and silicates , 2000, Mineralogical Magazine.

[7]  L. Boatner,et al.  Optical spectroscopy of erbium-doped lutetium orthophosphate , 1999 .

[8]  L. Boatner,et al.  Dynamic Coupling of Crystal-Field and Phonon States in YbPO4 , 1999 .

[9]  L. Boatner,et al.  Optical spectroscopy and lasing properties of neodymium-doped lutetium orthophosphate , 1999 .

[10]  L. Boatner,et al.  Crystal-field splitting, magnetic interaction, and vibronic excitations of 244Cm3+ in YPO4 and LuPO4 , 1998 .

[11]  H. Förster The chemical composition of REE-Y-Th-U-rich accessory minerals in peraluminous granites of the Erzgebirge-Fichtelgebirge region, Germany. Part II: Xenotime , 1998 .

[12]  W. Heinrich,et al.  Experimental determination of REE distributions between monazite and xenotime: potential for temperature-calibrated geochronology , 1998 .

[13]  W. J. Weber,et al.  Radiation damage in zircon and monazite , 1998 .

[14]  Lynn A. Boatner,et al.  Prospects for dense, infrared emitting scintillators , 1998 .

[15]  K. Ettinger,et al.  Pretulite, ScPO4, a new scandium mineral from the Styrian and Lower Austrian lazulite occurrences, Austria , 1998 .

[16]  H. Foerster The chemical composition of REE-Y-Th-U-rich accessory minerals in peraluminous granites of the Erzgebirge-Fichtelgebirge region, Germany, Part I: The monazite-(Ce)-brabantite solid solution series , 1998 .

[17]  R. Ewing,et al.  Displacive radiation effects in the monazite- and zircon-structure orthophosphates , 1997 .

[18]  L. Boatner,et al.  Lattice dynamics of xenotime: The phonon dispersion relations and density of states of LuPO 4 , 1997 .

[19]  R. Podor,et al.  Experimental study of Th-bearing LaPO4 (780 ℃, 200 MPa): Implications for monazite and actinide orthophosphate stability , 1997 .

[20]  W. Heinrich,et al.  Monazite-xenotime thermobarometry: Experimental calibration of the miscibility gap in the binary system CePO4-YPO4 , 1997 .

[21]  R. Ewing,et al.  Electron-irradiation-induced nucleation and growth in amorphous LaPO_4, ScPO_4, and zircon , 1997 .

[22]  W. Heinrich,et al.  Partial resetting of the UPb isotope system in monazite through hydrothermal experiments: An SEM and UPb isotope study , 1997 .

[23]  R. Ewing,et al.  ION-BEAM-INDUCED AMORPHIZATION OF LAPO4 AND SCPO4 , 1997 .

[24]  L. Boatner,et al.  Lattice dynamics of LuPO4 , 1997 .

[25]  L. Boatner,et al.  Electronic Structure of ScPO4 Single Crystals: Optical and Photoelectric Properties , 1997 .

[26]  W. Heinrich,et al.  Monazite–xenotime miscibility gap thermometry. I. An empirical calibration , 1997 .

[27]  F. Poitrasson,et al.  Contrasted monazite hydrothermal alteration mechanisms and their geochemical implications , 1996 .

[28]  L. Boatner,et al.  Excited state absorption and fluorescence line narrowing studies of Cm3+ in LuPO4 , 1996 .

[29]  Y. Hikichi,et al.  Synthesis and thermal reactions of rhabdophane- (Y) , 1996 .

[30]  F. Bea Residence of REE, Y, Th and U in granites and crustal protoliths : implications for the chemistry of crustal melts , 1996 .

[31]  L. Boatner,et al.  Monazite- and zircon-type structures of seven mixed (Ln/Ln) PO4 compounds , 1996 .

[32]  Sytsma,et al.  Spectroscopic studies and crystal-field analysis of Cm3+ and Gd3+ in LuPO4. , 1995, Physical review. B, Condensed matter.

[33]  G. Gillies,et al.  Characterization of high-temperature thermographic phosphors: spectral properties of LuPO(4):Dy(1%),Eu(2%). , 1995, Applied optics.

[34]  Y. Hikichi,et al.  Preparation of rhabdophane-type RPO4·nH2O (R = Y or Er, n = 0.7–0.8) by pot-milling churchite-type RPO4·2H2O at 20–25 °C in air , 1995 .

[35]  D. Marshall,et al.  Ceramic Composites of Monazite and Alumina , 1995 .

[36]  John M. Hughes,et al.  Crystal chemistry of the monazite and xenotime structures , 1995 .

[37]  L. Boatner,et al.  Anomalous temperature dependence of the lattice parameters in HoPO4 and HoVO4: rare earth quadrupolar effects , 1995 .

[38]  F. Bea,et al.  Differentiation of strongly peraluminous, perphosphorus granites: The pedrobernardo pluton, central Spain , 1994 .

[39]  J. Xue,et al.  Rare earth energy levels and magnetic properties of DyPo4 , 1994 .

[40]  B. Chakoumakos,et al.  Crystal Structure Refinements of Zircon-Type MVO4 (M = Sc, Y, Ce, Pr, Nd, Tb, Ho, Er, Tm, Yb, Lu) , 1994 .

[41]  A. Wojtowicz,et al.  Cerium-Doped Orthophosphate Scintillators , 1994 .

[42]  Abraham,et al.  Zero-field splitting of Cm3+ in LuPO4 single crystals. , 1993, Physical review. B, Condensed matter.

[43]  M. M. Abraham,et al.  Spectroscopic studies of magnetic transitions in TbPO4 , 1993 .

[44]  Goodman,et al.  Ground-state wave functions of Tb3+ ions in paramagnetic TbPO4: A neutron scattering study. , 1993, Physical review. B, Condensed matter.

[45]  Sytsma,et al.  Two-photon excitation of the 4f1-->5d1 transitions of Ce3+ in LuPO4 and YPO4. , 1993, Physical review. B, Condensed matter.

[46]  David B. Marshall,et al.  Functional interfaces for oxide/oxide composites , 1993 .

[47]  L. Boatner,et al.  Crystal‐field excitations and magnetic properties of TmPO4 , 1993 .

[48]  Y. Hikichi,et al.  Mechanochemical changes in hydrated rare earth orthophosphate minerals by grinding , 1993 .

[49]  Abraham,et al.  Electron paramagnetic resonance of Pu3+ and Cf3+ in single crystals of LuPO4. , 1993, Physical review. B, Condensed matter.

[50]  D. Shuh,et al.  Characterization of Ce-Doped LaPO 4 by X-Ray Absorption Spectroscopy , 1993 .

[51]  M. Balcerzyk,et al.  Cerium-doped orthophosphates: new promising scintillators , 1992 .

[52]  Chun-Keung Loong,et al.  Neutron study of crystal‐field transitions in ErPO4 , 1992 .

[53]  L. Boatner,et al.  Single-crystal analysis of mixed (Ln/TbPO4) orthophosphates , 1992 .

[54]  Williams,et al.  Observation of strong electron-phonon coupling effects in YbPO4. , 1992, Physical review. B, Condensed matter.

[55]  L. Boatner,et al.  Rare‐Earth Element Reference Samples for Electron Microprobe Analysis , 1991 .

[56]  Y. Hikichi Synthesis of monazite (RPO4, R=La, Ce, Nd, or Sm) by solid state reaction , 1991 .

[57]  Y. Hikichi,et al.  Mechanical conversion of rhabdphane type RPO4nH2O (R=La,Ce,Pr,Nd or Sm, n-1/2) to the monazite type analogues. , 1991 .

[58]  L. Boatner,et al.  A structural investigation of several mixed lanthanide orthophosphates , 1990 .

[59]  James Saling,et al.  Radioactive Waste Management , 1990 .

[60]  Williams,et al.  Intensities of electronic Raman scattering between crystal-field levels of Ce3+ in LuPO4: Nonresonant and near-resonant excitation. , 1989, Physical review. B, Condensed matter.

[61]  Williams,et al.  Anomalously small 4f-5d oscillator strengths and 4f-4f electronic Raman scattering cross sections for Ce3+ in crystals of LuPO4. , 1989, Physical review. B, Condensed matter.

[62]  Williams,et al.  Excitation profiles of resonance electronic Raman scattering in ErPO4 crystals. , 1989, Physical review. B, Condensed matter.

[63]  Y. Hikichi,et al.  Mechanochemical Changes of Weinschenkite‐Type RPO4·2H2O (R = Dy, Y, Er, or Yb) by Grinding and Thermal Reactions of the Ground Specimens , 1989 .

[64]  Toshio Sasaki,et al.  Thermal Reactions of Hydrated Hexagonal RPO4·nH2O (R=Tb or Dy, n=0.5 to 1) , 1988 .

[65]  James E. Shelby,et al.  Properties and Structure of Lead Fluorosilicate Glasses , 1988 .

[66]  L. Boatner,et al.  Surface reactions of synthetic, end-member analogues of monazite, xenotime and rhabdophane, and evolution of natural waters , 1988 .

[67]  Y. Hikichi,et al.  Melting Temperatures of Monazite and Xenotime , 1987 .

[68]  Conway,et al.  EPR and optical-absorption studies of Cmsup3+ in YPO4 and LuPO4 single crystals. , 1987, Physical review. B, Condensed matter.

[69]  E. Vance,et al.  DTA study of the rhabdophane to monazite transformation in rare earth (La-Dy) phosphates , 1986 .

[70]  E. Watson,et al.  Monazite solubility and dissolution kinetics: implications for the thorium and light rare earth chemistry of felsic magmas , 1986 .

[71]  L. Boatner,et al.  Crystal structure of 1:1 gadolinium/ytterbium orthophosphate , 1986 .

[72]  L. Boatner,et al.  EPR observations of trivalent titanium in orthophosphate single crystals , 1986 .

[73]  P. Becker,et al.  Resonance electronic Raman scattering in erbium phosphate crystals. , 1986, Optics letters.

[74]  L. Boatner,et al.  EPR and thermoluminescence investigations of Mn2+ in LuPO4, YPO4, and ScPO4 , 1985 .

[75]  L. Boatner,et al.  The observation by EPR of trivalent hafnium in LuPO4, YPO4, and ScPO4 , 1985 .

[76]  Williams,et al.  Intensities and asymmetries of electronic Raman scattering in ErPO4 and TmPO4. , 1985, Physical review. B, Condensed matter.

[77]  L. Boatner,et al.  Structural refinements of praseodymium and neodymium orthophosphate , 1985 .

[78]  Y. Eyal,et al.  Preferential leaching and the age of radiation damage from alpha decay in minerals , 1985 .

[79]  L. Boatner,et al.  Coordination geometry and structural determinations of SmPO4, EuPO4 and GdPO4 , 1985 .

[80]  M. Rappaz,et al.  The occurrence and stability of trivalent zirconium in orthophosphate single crystals , 1984 .

[81]  P. Becker,et al.  Crystal field analysis of Tm3+ and Yb3+ in YPO4 and LuPO4 , 1984 .

[82]  L. Boatner,et al.  Ninefold coordination LaPO4: Pentagonal interpenetrating tetrahedral polyhedron , 1984 .

[83]  A. Uhler,et al.  Solubility product of galena at 298°K: A possible explanation for apparent supersaturation in nature , 1984 .

[84]  R. Haire,et al.  Synthesis and characterization of crystalline phosphates of plutonium(III) and plutonium(IV) , 1984 .

[85]  B. Sales,et al.  Lanthanide orthophosphate ceramics for the disposal of actinide-contaminated nuclear wastes , 1984 .

[86]  L. Boatner,et al.  Structures of ErPO4, TmPO4, and YbPO4 , 1983 .

[87]  M. Rappaz,et al.  An EPR study of rare‐earth impurities in single crystals of the zircon‐structure orthophosphates ScPO4, YPO4, and LuPO4 a) , 1983 .

[88]  L. Boatner,et al.  The structures of three lanthanide orthophosphates , 1983 .

[89]  B. Sales,et al.  A comparison of the corrosion characteristics of synthetic monazite and borosilicate glass containing simulated nuclear defense waste , 1983 .

[90]  L. Boatner,et al.  Crystal data for lanthanide orthophosphates with the zircon-type structure , 1983 .

[91]  L. Boatner,et al.  Electron-paramagnetic-resonance investigations of /sup 243/Cm/sup 3 +/ and /sup 244/Cm/sup 3 +/ in LuPO/sub 4/ single crystals , 1982 .

[92]  C. Bamberger Preparation of Metal Phosphates by Metathesis Reaction with BPO4 , 1982 .

[93]  Y. Eyal,et al.  Alpha-recoil damage in monazite: preferential dissolution of the radiogenic actinide isotopes , 1982 .

[94]  T. Hayhurst,et al.  Optical spectra and Zeeman effect for Pr3+ and Nd3+ in LuPO4 and YPO4 , 1982 .

[95]  L. Boatner,et al.  Structural investigations of YPO4, ScPO4, and LuPO4 , 1982 .

[96]  W. Gregor,et al.  Raman spectra of the rare earth orthophosphates , 1981 .

[97]  T. Hayhurst,et al.  Optical spectra and Zeeman effect for Er3+ in LuPO4 and HfSiO4 , 1981 .

[98]  R. Roy,et al.  Irradiated and metamict materials: relevance to radioactive waste science , 1981 .

[99]  M. Rappaz,et al.  EPR spectroscopic characterization of Gd/sup 3 +/ in the monazite-type rare-earth orthophosphates: LaPO/sub 4/, CePO/sub 4/, PrPO/sub 4/, NdPO/sub 4/, SmPO/sub 4/, and EuPO/sub 4/ , 1981 .

[100]  L. Boatner,et al.  The structure of cerium orthophosphate, a synthetic analogue of monazite , 1981 .

[101]  E. Vance,et al.  Crystal data for rare earth orthophosphates of the monazite structure-type , 1981 .

[102]  M. Rappaz,et al.  Novel measurement of hyperfine interactions in solids: 207Pb3+ in YPO4 and LuPO4 , 1980 .

[103]  M. Rappaz,et al.  EPR investigations of Fe3+ in single crystals and powders of the zircon‐structure orthophosphates LuPO4, YPO4, and ScPO4 , 1980 .

[104]  Y. Hikichi,et al.  Solid state reactions between rare earth orthophosphate and oxide. , 1980 .

[105]  M. Rappaz,et al.  Preparation and compaction of synthetic monazite powders , 1980 .

[106]  R. Ewing,et al.  The metamict state: Implications for radiation damage in crystalline waste forms☆☆☆ , 1980 .

[107]  Y. Hikichi,et al.  Syntheses of rare earth orthophosphates. , 1978 .

[108]  G. Mccarthy,et al.  Synthesis of nuclear waste monazites, ideal actinide hosts for geologic disposal , 1978 .

[109]  W. Wendl,et al.  Solubility curves in high-temperature melts for the growth of single crystals of rare earth vanadates and phosphates† , 1978 .

[110]  C. M. Gramaccioli,et al.  A uranium- and thorium-rich monazite from a South-Alpine pegmatite at Piona, Italy , 1978 .

[111]  B. Wanklyn Effects of modifying starting compositions for flux growth , 1978 .

[112]  A. Welch,et al.  Crystal data for lanthanide orthophosphates , 1976 .

[113]  S. H. Smith,et al.  X-ray topographic study of the perfection of flux-grown rare earth phosphates , 1975 .

[114]  R. Ewing The crystal chemistry of complex niobium and tantalum oxides. IV. The metamict state: Discussion , 1975 .

[115]  M. Thornber,et al.  The crystal chemistry of complex niobium and tantalum oxides IV. The metamict state , 1974 .

[116]  S. H. Smith,et al.  Flux growth of rare earth vanadates and phosphates , 1974 .

[117]  B. Wanklyn Flux growth of some complex oxide materials , 1972 .

[118]  P. Pasteels URANIUM--LEAD RADIOACTIVE AGES OF MONAZITE AND ZIRCON FROM THE VIRE- CAROLLES GRANITE (NORMANDY). A CASE OF ZIRCON-MONAZITE DISCREPANCY. , 1970 .

[119]  G. Müller‐vogt,et al.  Crystal growth and lattice parameters of rare-earth doped yttrium phosphate, arsenate and vanadate prepared by the oscillating temperature flux technique , 1969 .

[120]  K. Ghouse REFINEMENT OF THE CRYSTAL STRUCTURE OF HEAT-TREATED MONAZITE CRYSTAL. , 1968 .

[121]  H. Henschel,et al.  Unit Cells of the Monazite‐Type Rare‐Earth Phosphates , 1965 .

[122]  R. Feigelson Synthesis and Single‐Crystal Growth of Rare‐Earth Orthophosphates , 1964 .

[123]  H. Schwarz Die Phosphate, Arsenate und Vanadate der Seltenen Erden , 1963 .

[124]  D. Wickham Use of Lead Pyrophosphate as a Flux for Crystal Growth , 1962 .

[125]  R. Meyrowitz,et al.  Ningyoite, a new uranous phosphate mineral from Japan , 1959 .

[126]  Toshio Kato A STUDY ON MONAZITE FROM THE EBISU MINE, GIFU PREFECTURE , 1958 .

[127]  R. Mooney X-ray diffraction study of cerous phosphate and related crystals. I. Hexagonal modification , 1950 .

[128]  J. Cutileiro [Treatment of exanthematic rickettsial diseases with aureomycin]. , 1950, Gazeta medica portuguesa.

[129]  R. Mooney Crystal Structures of a Series of Rare Earth Phosphates , 1948 .

[130]  W. Parrish Unit cell and space group of monazite,(La,Ce,Y)PO4 , 1939 .

[131]  S. V. Gliszçzynski Beitrag zur »Isomorphic« von Monazit und Krokoit , 1939 .

[132]  S. Johnstone Monazites from some new localities , 1914 .