Landscape Encodings Enhance Optimization

Hard combinatorial optimization problems deal with the search for the minimum cost solutions (ground states) of discrete systems under strong constraints. A transformation of state variables may enhance computational tractability. It has been argued that these state encodings are to be chosen invertible to retain the original size of the state space. Here we show how redundant non-invertible encodings enhance optimization by enriching the density of low-energy states. In addition, smooth landscapes may be established on encoded state spaces to guide local search dynamics towards the ground state.

[1]  M. Held,et al.  A dynamic programming approach to sequencing problems , 1962, ACM National Meeting.

[2]  S. Kirkpatrick,et al.  Solvable Model of a Spin-Glass , 1975 .

[3]  John Holland,et al.  Adaptation in Natural and Artificial Sys-tems: An Introductory Analysis with Applications to Biology , 1975 .

[4]  J. M. Oshorn Proc. Nat. Acad. Sei , 1978 .

[5]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[6]  Richard M. Karp,et al.  The Differencing Method of Set Partitioning , 1983 .

[7]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[8]  Béla Bollobás,et al.  Random Graphs , 1985 .

[9]  K. Binder,et al.  Spin glasses: Experimental facts, theoretical concepts, and open questions , 1986 .

[10]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[11]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[12]  Aviezri S. Fraenkel,et al.  Complexity of protein folding , 1993 .

[13]  P. Schuster,et al.  From sequences to shapes and back: a case study in RNA secondary structures , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[14]  J. Marks,et al.  Easily searched encodings for number partitioning , 1996 .

[15]  Alberto Caprara,et al.  Sorting by reversals is difficult , 1997, RECOMB '97.

[16]  P. Schuster,et al.  Generic properties of combinatory maps: neutral networks of RNA secondary structures. , 1997, Bulletin of mathematical biology.

[17]  S. Mertens Phase Transition in the Number Partitioning Problem , 1998, cond-mat/9807077.

[18]  J. Crutchfield,et al.  Metastable evolutionary dynamics: Crossing fitness barriers or escaping via neutral paths? , 1999, Bulletin of mathematical biology.

[19]  Béla Bollobás,et al.  Random Graphs: Notation , 2001 .

[20]  Christian M. Reidys,et al.  Combinatorial Landscapes , 2002, SIAM Rev..

[21]  Richard A. Watson,et al.  On the Utility of Redundant Encodings in Mutation-Based Evolutionary Search , 2002, PPSN.

[22]  Franz Rothlauf,et al.  Representations for genetic and evolutionary algorithms , 2002, Studies in Fuzziness and Soft Computing.

[23]  Julian Francis Miller,et al.  Finding Needles in Haystacks Is Not Hard with Neutrality , 2002, EuroGP.

[24]  M. Mézard,et al.  Analytic and Algorithmic Solution of Random Satisfiability Problems , 2002, Science.

[25]  Franz Rothlauf,et al.  Redundant Representations in Evolutionary Computation , 2003, Evolutionary Computation.

[26]  Michael Lässig,et al.  Local graph alignment and motif search in biological networks. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Checking for optimal solutions in some NP-complete problems. , 2005, Physical review letters.

[28]  Wolfgang Banzhaf,et al.  Evolution on Neutral Networks in Genetic Programming , 2006 .

[29]  Ricard V Solé,et al.  Neutral fitness landscapes in signalling networks , 2007, Journal of The Royal Society Interface.

[30]  David L. Applegate,et al.  The traveling salesman problem , 2006 .

[31]  Rick L. Riolo,et al.  Genetic Programming Theory and Practice XIX , 2008, Genetic and Evolutionary Computation.

[32]  Mean-field spin glass in the observable representation. , 2007, Physical review letters.

[33]  Peter F. Stadler,et al.  Saddles and barrier in landscapes of generalized search operators , 2007, FOGA'07.

[34]  Byung Ro Moon,et al.  Normalization for Genetic Algorithms With Nonsynonymously Redundant Encodings , 2008, IEEE Transactions on Evolutionary Computation.

[35]  Federico Ricci-Tersenghi,et al.  Being Glassy Without Being Hard to Solve , 2010, Science.

[36]  Franz Rothlauf,et al.  Design of Modern Heuristics: Principles and Application , 2011 .

[37]  Franz Rothlauf,et al.  Design of Modern Heuristics , 2011, Natural Computing Series.