Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth

[1]  O. Borodin,et al.  High rate and stable cycling of lithium metal anode , 2015, Nature Communications.

[2]  S. Chu,et al.  Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. , 2014, Nano letters.

[3]  Guangyuan Zheng,et al.  Interconnected hollow carbon nanospheres for stable lithium metal anodes. , 2014, Nature nanotechnology.

[4]  Hyun-Wook Lee,et al.  A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. , 2014, Nature nanotechnology.

[5]  Ji‐Guang Zhang,et al.  Lithium metal anodes for rechargeable batteries , 2014 .

[6]  Y. Chu,et al.  In situ TEM study of the Li-Au reaction in an electrochemical liquid cell. , 2014, Faraday discussions.

[7]  Yi Cui,et al.  25th Anniversary Article: Understanding the Lithiation of Silicon and Other Alloying Anodes for Lithium‐Ion Batteries , 2013, Advanced materials.

[8]  Yadong Yin,et al.  Templated Synthesis of Nanostructured Materials , 2013 .

[9]  Yi Cui,et al.  Reliable reference electrodes for lithium-ion batteries , 2013 .

[10]  Y. Gan,et al.  Sol-gel coating of inorganic nanostructures with resorcinol-formaldehyde resin. , 2013, Chemical communications.

[11]  Rachid Meziane,et al.  Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. , 2013, Nature materials.

[12]  Jun Liu,et al.  Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. , 2013, Journal of the American Chemical Society.

[13]  Yi Cui,et al.  In situ TEM of two-phase lithiation of amorphous silicon nanospheres. , 2013, Nano letters.

[14]  A. Majumdar,et al.  Opportunities and challenges for a sustainable energy future , 2012, Nature.

[15]  M. Stanley Whittingham,et al.  History, Evolution, and Future Status of Energy Storage , 2012, Proceedings of the IEEE.

[16]  Alexej Jerschow,et al.  7Li MRI of Li batteries reveals location of microstructural lithium. , 2012, Nature materials.

[17]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[18]  Unyong Jeong,et al.  Assembled monolayers of hydrophilic particles on water surfaces. , 2011, ACS nano.

[19]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[20]  D. Zhao,et al.  Extension of the Stöber method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres. , 2011, Angewandte Chemie.

[21]  Hailong Chen,et al.  In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. , 2010, Nature materials.

[22]  Dennis W. Dees,et al.  Morphological Transitions on Lithium Metal Anodes , 2009 .

[23]  Mark N. Obrovac,et al.  Structural changes in silicon anodes during lithium insertion/extraction , 2004 .

[24]  Doron Aurbach,et al.  A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions , 2002 .

[25]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[26]  D. Aurbach Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries , 2000 .

[27]  R. V. Duyne,et al.  Nanosphere Lithography: Size-Tunable Silver Nanoparticle and Surface Cluster Arrays , 1999 .

[28]  D. Aurbach,et al.  X-ray photoelectron spectroscopy studies of lithium surfaces prepared in several important electrolyte solutions. A comparison with previous studies by Fourier transform infrared spectroscopy , 1996 .

[29]  Lawrence H. Bennett,et al.  Binary alloy phase diagrams , 1986 .

[30]  M. Whittingham,et al.  Electrical Energy Storage and Intercalation Chemistry , 1976, Science.

[31]  G. Frens Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions , 1973 .

[32]  W. Stöber,et al.  Controlled growth of monodisperse silica spheres in the micron size range , 1968 .