Hybrid functional investigations of band gaps and band alignments for AlN, GaN, InN, and InGaN.

Band gaps and band alignments for AlN, GaN, InN, and InGaN alloys are investigated using density functional theory with the with the Heyd-Scuseria-Ernzerhof {HSE06 [J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 134, 8207 (2003); 124, 219906 (2006)]} XC functional. The band gap of InGaN alloys as a function of In content is calculated and a strong bowing at low In content is found, described by bowing parameters 2.29 eV at 6.25% and 1.79 eV at 12.5%, indicating the band gap cannot be described by a single composition-independent bowing parameter. Valence-band maxima (VBM) and conduction-band minima (CBM) are aligned by combining bulk calculations with surface calculations for nonpolar surfaces. The influence of surface termination [(1100) m-plane or (1120) a-plane] is thoroughly investigated. We find that for the relaxed surfaces of the binary nitrides the difference in electron affinities between m- and a-plane is less than 0.1 eV. The absolute electron affinities are found to strongly depend on the choice of XC functional. However, we find that relative alignments are less sensitive to the choice of XC functional. In particular, we find that relative alignments may be calculated based on Perdew-Becke-Ernzerhof [J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 134, 3865 (1996)] surface calculations with the HSE06 lattice parameters. For InGaN we find that the VBM is a linear function of In content and that the majority of the band-gap bowing is located in the CBM. Based on the calculated electron affinities we predict that InGaN will be suited for water splitting up to 50% In content.

[1]  T. Suski,et al.  Limitations to band gap tuning in nitride semiconductor alloys , 2010 .

[2]  Band gap bowing and electron localization of GaxIn1- xN , 2006 .

[3]  Petter Holmström,et al.  High structural quality InN∕In0.75Ga0.25N multiple quantum wells grown by molecular beam epitaxy , 2006 .

[4]  Kazuhiro Ohkawa,et al.  Hydrogen Gas Generation by Splitting Aqueous Water Using n-Type GaN Photoelectrode with Anodic Oxidation , 2005 .

[5]  S. Gwo,et al.  Cross-sectional scanning photoelectron microscopy and spectroscopy of wurtzite InN/GaN heterojunction : Measurement of intrinsic band lineup , 2008 .

[6]  J. Lin,et al.  Direct hydrogen gas generation by using InGaN epilayers as working electrodes , 2008 .

[7]  S. Misawa,et al.  Optical properties of AlN epitaxial thin films in the vacuum ultraviolet region , 1979 .

[8]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[9]  B. Segall,et al.  THEORETICAL STUDY OF THE BAND OFFSETS AT GAN/ALN INTERFACES , 1994 .

[10]  Karsten W. Jacobsen,et al.  An object-oriented scripting interface to a legacy electronic structure code , 2002, Comput. Sci. Eng..

[11]  Axel van de Walle,et al.  Thermodynamic properties of binary hcp solution phases from special quasirandom structures , 2006, 0708.3995.

[12]  J. Timler,et al.  Conduction band offset at the InN∕GaN heterojunction , 2007 .

[13]  Matthias Scheffler,et al.  Combining GW calculations with exact-exchange density-functional theory: an analysis of valence-band photoemission for compound semiconductors , 2005, cond-mat/0502404.

[14]  S. Kurtz,et al.  Using MOVPE growth to generate tomorrow's solar electricity , 2007 .

[15]  W. Aulbur,et al.  Quasiparticle calculations of band offsets at AlN–GaN interfaces , 2002 .

[16]  R. Car,et al.  Hybrid density functional calculations of the band gap of Ga x In 1-x N , 2009, 0907.2001.

[17]  A. Yoshikawa,et al.  Bowing of the band gap pressure coefficient in InxGa1−xN alloys , 2008 .

[18]  Egill Skúlason,et al.  Modeling the electrified solid-liquid interface , 2008 .

[19]  F. Bechstedt,et al.  First-principles calculations of gap bowing in In x Ga 1 − x N and In x Al 1 − x N alloys: Relation to structural and thermodynamic properties , 2002 .

[20]  T. Matsui,et al.  Estimation of band-gap energy of intrinsic InN from photoluminescence properties of undoped and Si-doped InN films grown by plasma-assisted molecular-beam epitaxy , 2004 .

[21]  Suhuai Wei,et al.  Band structure and fundamental optical transitions in wurtzite AlN , 2003 .

[22]  Teresa Monteiro,et al.  Compositional dependence of the strain-free optical band gap in InxGa1−xN layers , 2001 .

[23]  J. Waldrop,et al.  Measurement of AlN/GaN (0001) heterojunction band offsets by x‐ray photoemission spectroscopy , 1996 .

[24]  Hongen Shen,et al.  In-polar InN grown by plasma-assisted molecular beam epitaxy , 2006 .

[25]  A. Janotti,et al.  Effects of surface reconstructions on oxygen adsorption at AlN polar surfaces , 2010 .

[26]  Baroni,et al.  Band offsets in lattice-matched heterojunctions: A model and first-principles calculations for GaAs/AlAs. , 1988, Physical review letters.

[27]  G. Rignanese,et al.  Band offsets at the Si/SiO2 interface from many-body perturbation theory. , 2008, Physical review letters.

[28]  P. H. Jefferson,et al.  Valence band offset of InN∕AlN heterojunctions measured by x-ray photoelectron spectroscopy , 2007 .

[29]  M. Nardelli,et al.  Strain effects on the interface properties of nitride semiconductors , 1997 .

[30]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[31]  Dieter Bimberg,et al.  Band gap and band parameters of InN and GaN from quasiparticle energy calculations based on exact-exchange density-functional theory , 2006 .

[32]  A. Kahn,et al.  Investigation of the chemistry and electronic properties of metal/gallium nitride interfaces , 1998 .

[33]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[34]  Rajendra Dahal,et al.  InGaN/GaN multiple quantum well solar cells with long operating wavelengths , 2009 .

[35]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[36]  Godby,et al.  First-principles calculations of many-body band-gap narrowing at an Al/GaAs(110) interface. , 1993, Physical review letters.

[37]  Paolo Lugli,et al.  AlN and GaN epitaxial heterojunctions on 6H–SiC(0001): Valence band offsets and polarization fields , 1999 .

[38]  L. Romano,et al.  Effect of composition on the band gap of strained InxGa1−xN alloys , 2003 .

[39]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[40]  Alfonso Franciosi,et al.  Heterojunction band offset engineering , 1996 .

[41]  Chih-I Wu,et al.  GaN (0001)-(1×1) surfaces: Composition and electronic properties , 1998 .

[42]  Takashi Ito,et al.  Band-Edge Energies and Photoelectrochemical Properties of n-Type Al x Ga1 − x N and In y Ga1 − y N Alloys , 2007 .

[43]  C. Walle,et al.  Small valence-band offsets at GaN/InGaN heterojunctions , 1997 .

[44]  A. Kahn,et al.  Electronic states at aluminum nitride (0001)-1×1 surfaces , 1999 .

[45]  S. Nakamura InGaN/AlGaN blue-light-emitting diodes , 1995 .

[46]  Umesh K. Mishra,et al.  High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap , 2008 .

[47]  A. Baldereschi,et al.  Band-offset trends in nitride heterojunctions , 2001 .

[48]  M. Scheffler,et al.  Consistent set of band parameters for the group-III nitrides AlN, GaN, and InN , 2008, 0801.0421.

[49]  Zhu,et al.  Quasiparticle band structure of thirteen semiconductors and insulators. , 1991, Physical review. B, Condensed matter.

[50]  Alan Francis Wright,et al.  Bowing parameters for zinc‐blende Al1−xGaxN and Ga1−xInxN , 1995 .

[51]  Eugene E. Haller,et al.  Small band gap bowing in In1−xGaxN alloys , 2002 .

[52]  Á. Rubio,et al.  Quasiparticle band structures of short-period superlattices and ordered alloys of AlN and GaN. , 1994, Physical review. B, Condensed matter.

[53]  J. Pankove,et al.  Epitaxially grown AlN and its optical band gap , 1973 .

[54]  Kazuhiro Ohkawa,et al.  Photoelectrochemical reaction and H2 generation at zero bias optimized by carrier concentration of n-type GaN. , 2007, The Journal of chemical physics.

[55]  Pierre Ruterana,et al.  First-principles investigation of lattice constants and bowing parameters in wurtzite AlxGa1−xN, InxGa1−xN and InxAl1−xN alloys , 2003 .

[56]  Michael Heuken,et al.  Optical, structural investigations and band-gap bowing parameter of GaInN alloys , 2009 .

[57]  J. J. Tietjen,et al.  THE PREPARATION AND PROPERTIES OF VAPOR‐DEPOSITED SINGLE‐CRYSTAL‐LINE GaN , 1969 .

[58]  Ray-Hua Horng,et al.  High-quality InGaN∕GaN heterojunctions and their photovoltaic effects , 2008 .

[59]  J. Misiewicz,et al.  Contactless electroreflectance of InGaN layers with indium content <=36%: The surface band bending, band gap bowing, and Stokes shift issues , 2009 .

[60]  L. Romano,et al.  Large and composition-dependent band gap bowing in InxGa1-xN alloys , 1999 .

[61]  O. Madelung Semiconductors - Basic Data , 2012 .

[62]  Ferreira,et al.  Special quasirandom structures. , 1990, Physical review letters.

[63]  S. Gwo,et al.  Polarization-induced valence-band alignments at cation- and anion-polar InN∕GaN heterojunctions , 2007 .

[64]  Poul Georg Moses,et al.  Band bowing and band alignment in InGaN alloys , 2010 .

[65]  Yen-Kuang Kuo,et al.  First-principles calculation for bowing parameter of wurtzite InxGa1 − xN , 2005 .

[66]  Heinz Schulz,et al.  Crystal structure refinement of AlN and GaN , 1977 .

[67]  Eugene E. Haller,et al.  Temperature dependence of the fundamental band gap of InN , 2003 .

[68]  C. Shih,et al.  Band Offsets of InN/GaN Interface , 2005 .

[69]  C. Caetano,et al.  Phase stability, chemical bonds, and gap bowing ofInxGa1−xNalloys: Comparison between cubic and wurtzite structures , 2006 .

[70]  R. Davis,et al.  Preparation and characterization of atomically clean, stoichiometric surfaces of n- and p-type GaN(0001) , 2003 .

[71]  Arthur J. Nozik,et al.  Photoelectrochemistry: Applications to Solar Energy Conversion , 1978 .

[72]  K. Fujii,et al.  Photoelectrochemical Properties of InGaN for H2 Generation from Aqueous Water , 2005 .

[73]  M. Scheffler,et al.  Strain effects in group-III nitrides: Deformation potentials for AlN, GaN, and InN , 2009 .

[74]  Lara K. Teles,et al.  Influence of composition fluctuations and strain on gap bowing inInxGa1−xN , 2001 .

[75]  Hadis Morkoç,et al.  Valence‐band discontinuities of wurtzite GaN, AlN, and InN heterojunctions measured by x‐ray photoemission spectroscopy , 1996 .

[76]  K. H. Ploog,et al.  Strong localization in InGaN layers with high In content grown by molecular-beam epitaxy , 2002 .

[77]  F. Bechstedt,et al.  Band‐structure and optical‐transition parameters of wurtzite MgO, ZnO, and CdO from quasiparticle calculations , 2009 .

[78]  E. Haller,et al.  On the crystalline structure, stoichiometry and band gap of InN thin films , 2004 .

[79]  S. M. Durbin,et al.  InN/GaN valence band offset : high-resolution x-ray photoemission spectroscopy measurements , 2008 .

[80]  T. Suski,et al.  Influence of indium clustering on the band structure of semiconducting ternary and quaternary nitride alloys , 2009 .

[81]  Robert F. Davis,et al.  UV photoemission study of heteroepitaxial AlGaN films grown on 6H-SiC , 1996 .

[82]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[83]  W. Mitchel,et al.  Theory of the composition dependence of the band offset and sheet carrier density in the GaN/AlxGa1−xN heterostructure , 2004 .

[84]  K. Fujii,et al.  Bias-Assisted H2 Gas Generation in HCl and KOH Solutions Using n-Type GaN Photoelectrode , 2006 .

[85]  S. Denbaars,et al.  Photoelectrochemical Properties of Nonpolar and Semipolar GaN , 2007 .

[86]  Jerry R. Meyer,et al.  Band parameters for nitrogen-containing semiconductors , 2003 .

[87]  S. Louie,et al.  Quasiparticle calculation of valence band offset of AlAs-GaAs(001) , 1988 .

[88]  Michael Kunzer,et al.  Determination of the GaN/AlN band offset via the (/0) acceptor level of iron , 1994 .

[89]  Vincenzo Fiorentini,et al.  MACROSCOPIC POLARIZATION AND BAND OFFSETS AT NITRIDE HETEROJUNCTIONS , 1998 .

[90]  Martin,et al.  Theoretical study of band offsets at semiconductor interfaces. , 1987, Physical review. B, Condensed matter.

[91]  Shuji Nakamura,et al.  Direct water photoelectrolysis with patterned n-GaN , 2007 .

[92]  Su-Huai Wei,et al.  Valence band splittings and band offsets of AlN, GaN, and InN , 1996 .

[93]  Valence-band discontinuities between InGaN and GaN evaluated by capacitance-voltage characteristics of p-InGaN/n-GaN diodes , 2002 .

[94]  Van de Walle CG,et al.  "Absolute" deformation potentials: Formulation and ab initio calculations for semiconductors. , 1989, Physical review letters.

[95]  Matthew D. McCluskey,et al.  LARGE BAND GAP BOWING OF INXGA1-XN ALLOYS , 1998 .

[96]  Oliver Ambacher,et al.  Energy gap and optical properties of InxGa1–xN , 2003 .

[97]  M. Kurouchi,et al.  Radio frequency-molecular beam epitaxial growth of InN epitaxial films on (0001) sapphire and their properties , 2004 .

[98]  S. Trasatti The absolute electrode potential: an explanatory note (Recommendations 1986) , 1986 .

[99]  J. Paier,et al.  Screened hybrid density functionals applied to solids. , 2006, The Journal of chemical physics.

[100]  W. Mönch Empirical tight‐binding calculation of the branch‐point energy of the continuum of interface‐induced gap states , 1996 .

[101]  Victor M. Bermudez,et al.  Study of oxygen chemisorption on the GaN(0001)‐(1×1) surface , 1996 .

[102]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[103]  Oliver Ambacher,et al.  Electron affinity of AlxGa1−xN(0001) surfaces , 2001 .

[104]  M. Paisley,et al.  AlN/GaN superlattices grown by gas source molecular beam epitaxy , 1991 .

[105]  Oliver Ambacher,et al.  Optical constants of epitaxial AlGaN films and their temperature dependence , 1997 .

[106]  Isamu Akasaki,et al.  Optical band gap in Ga1−xInxN (0 , 1998 .

[107]  A. Janotti,et al.  Reconstructions and origin of surface states on AlN polar and nonpolar surfaces , 2009 .

[108]  P. Vogl,et al.  Stability and band offsets of AlN/GaN heterostructures: impact on device performance , 1998 .