Mediated taxonomy system for bioinformatics data integration

In biomedical/biological research fields, scientists usually face the problem of information explosion. Once a query is issued, a collection of data instance IDs such as protein accession numbers are returned. Each protein must be checked for the features of interest. This paper addresses the characterization and differentiating of biological data in the context of mediated domain ontology based on the multilevel abstraction framework. Our mediator system features hybrid ontologies (internal core ontology concept and external classification/annotation concepts) for the interpretation of protein and gene instance data in the context of interaction, pathway and process, which achieve the goal of data integration at the instance level.

[1]  Rolf Apweiler,et al.  The EBI SRS Server: Recent Developments , 2002, German Conference on Bioinformatics.

[2]  Carole A. Goble,et al.  Transparent access to multiple bioinformatics information sources , 2001, IBM Syst. J..

[3]  Alon Y. Halevy,et al.  Answering queries using views: A survey , 2001, The VLDB Journal.

[4]  Gary D Bader,et al.  BIND--The Biomolecular Interaction Network Database. , 2001, Nucleic acids research.

[5]  Amos Bairoch,et al.  The ENZYME database in 2000 , 2000, Nucleic Acids Res..

[6]  Thomas Steinke,et al.  Columba: an integrated database of proteins, structures, and annotations , 2005, BMC Bioinformatics.

[7]  Olivier Bodenreider,et al.  Semantic webs for life sciences. , 2006, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[8]  Kiyoko F. Aoki-Kinoshita,et al.  From genomics to chemical genomics: new developments in KEGG , 2005, Nucleic Acids Res..

[9]  Purvesh Khatri,et al.  Babel's tower revisited: a universal resource for cross-referencing across annotation databases , 2006, Bioinform..

[10]  Paul F. Bugni,et al.  A knowledgebase system to enhance scientific discovery: Telemakus , 2004, Biomedical digital libraries.

[11]  Ramez Elmasri,et al.  Modelling concepts and database implementation techniques for complex biological data , 2007, Int. J. Bioinform. Res. Appl..

[12]  Peter Mork,et al.  The Multiple Roles of Ontologies in the BioMediator Data Integration System , 2005, DILS.

[13]  R. Durbin,et al.  The Sequence Ontology: a tool for the unification of genome annotations , 2005, Genome Biology.

[14]  Frances M. G. Pearl,et al.  The CATH Domain Structure Database and related resources Gene3D and DHS provide comprehensive domain family information for genome analysis , 2004, Nucleic Acids Res..

[15]  Olivier Bodenreider,et al.  Session Introduction , 2005, Pacific Symposium on Biocomputing.

[16]  Gene Ontology Consortium,et al.  The Gene Ontology (GO) project in 2006 , 2005, Nucleic Acids Res..

[17]  Patrick Lambrix,et al.  Ontology-based integration for bioinformatics , 2005 .

[18]  Robert D. Finn,et al.  Pfam: clans, web tools and services , 2005, Nucleic Acids Res..

[19]  David L. Wheeler,et al.  GenBank , 2015, Nucleic Acids Res..

[20]  Heiner Stuckenschmidt,et al.  Index structures and algorithms for querying distributed RDF repositories , 2004, WWW '04.

[21]  Andrew C. R. Martin Databases and ontologies Mapping PDB chains to UniProtKB entries , 2005 .

[22]  Zukang Feng,et al.  The Protein Data Bank and structural genomics , 2003, Nucleic Acids Res..

[23]  Tharam S. Dillon,et al.  Protein Ontology Project in 2007: Looking Backward and Forward , 2007, Twentieth IEEE International Symposium on Computer-Based Medical Systems (CBMS'07).

[24]  Ramez Elmasri,et al.  Fundamentals of Database Systems , 1989 .

[25]  Marcella Attimonelli,et al.  HmtDB, a Human Mitochondrial Genomic Resource Based on Variability Studies Supporting Population Genetics and Biomedical Research , 2005, BMC Bioinformatics.

[26]  Shamkant B. Navathe,et al.  MITOMAP: a human mitochondrial genome database--1998 update , 1998, Nucleic Acids Res..

[27]  A. Rector,et al.  Relations in biomedical ontologies , 2005, Genome Biology.