Fabrication and electrical characteristics of high-performance ZnO nanorod field-effect transistors

We report on fabrication and electrical characteristics of high-mobility field-effect transistors (FETs) using ZnO nanorods. For FET fabrications, single-crystal ZnO nanorods were prepared using catalyst-free metalorganic vapor phase epitaxy. Although typical ZnO nanorod FETs exhibited good electrical characteristics, with a transconductance of ∼140nS and a mobility of 75cm2∕Vs, the device characteristics were significantly improved by coating a polyimide thin layer on the nanorod surface, exhibiting a large turn-ON/OFF ratio of 104–105, a high transconductance of 1.9μS, and high electron mobility above 1000cm2∕Vs. The role of the polymer coating in the enhancement of the devices is also discussed.

[1]  Phaedon Avouris,et al.  Field-Effect Transistors Based on Single Semiconducting Oxide Nanobelts , 2003 .

[2]  Hong Koo Kim,et al.  Ultraviolet detection with ultrathin ZnO epitaxial films treated with oxygen plasma , 2004 .

[3]  H. Gatos,et al.  Quantitative study of the charge transfer in chemisorption; oxygen chemisorption on ZnO , 1977 .

[4]  Seonuk Park,et al.  Schottky nanocontacts on ZnO nanorod arrays , 2003 .

[5]  Chao Li,et al.  Diameter‐Controlled Growth of Single‐Crystalline In2O3 Nanowires and Their Electronic Properties , 2003 .

[6]  T. Hook Polyimide-related design considerations in a bipolar technology , 1990 .

[7]  Gyu-Chul Yi,et al.  Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods , 2002 .

[8]  Qian Wang,et al.  Germanium nanowire field-effect transistors with SiO2 and high-κ HfO2 gate dielectrics , 2003 .

[9]  Peidong Yang,et al.  Nanowire ultraviolet photodetectors and optical switches , 2002 .

[10]  Gyu-Chul Yi,et al.  Quantum Confinement Observed in ZnO/ZnMgO Nanorod Heterostructures , 2003 .

[11]  T. J. Hall,et al.  Current analysis of polyimide passivated InGaP/GaAs HBT , 1996 .

[12]  K. Rim,et al.  Fabrication and analysis of deep submicron strained-Si n-MOSFET's , 2000 .

[13]  Paul L. McEuen,et al.  High Performance Electrolyte Gated Carbon Nanotube Transistors , 2002 .

[14]  Charles M. Lieber,et al.  High Performance Silicon Nanowire Field Effect Transistors , 2003 .

[15]  U. Mishra,et al.  The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs , 2001 .

[16]  W. Park,et al.  Electroluminescence in n‐ZnO Nanorod Arrays Vertically Grown on p‐GaN , 2004 .

[17]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[18]  Hong Wang,et al.  DC and microwave noise transient behavior of InP/InGaAs double heterojunction bipolar transistor (DHBT) with polyimide passivation , 2001 .

[19]  Yiying Wu,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers , 2001, Science.

[20]  S. Ramo,et al.  Fields and Waves in Communication Electronics , 1966 .

[21]  Benjamin J. Norris,et al.  ZnO-based transparent thin-film transistors , 2003 .

[22]  S. Wolf,et al.  Silicon Processing for the VLSI Era , 1986 .

[23]  Charles M. Lieber,et al.  Gallium Nitride Nanowire Nanodevices , 2002 .

[24]  G. Yi,et al.  Low-resistance Ti/Al ohmic contact on undoped ZnO , 2002 .