Datafold: Data-driven Models for Point Clouds and Time Series on Manifolds
暂无分享,去创建一个
Gerta Köster | Felix Dietrich | Daniel Lehmberg | Hans-Joachim | Bungartz | Felix Dietrich | Daniel Lehmberg | Gerta Köster | Hans-Joachim
[1] Gianluigi Rozza,et al. PyDMD: Python Dynamic Mode Decomposition , 2018, J. Open Source Softw..
[2] Christopher M. Bishop,et al. Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .
[3] Steven L. Brunton,et al. Discovery of Nonlinear Multiscale Systems: Sampling Strategies and Embeddings , 2018, SIAM J. Appl. Dyn. Syst..
[4] Jürgen Schmidhuber,et al. Long Short-Term Memory , 1997, Neural Computation.
[5] D. Giannakis. Data-driven spectral decomposition and forecasting of ergodic dynamical systems , 2015, Applied and Computational Harmonic Analysis.
[6] Clarence W. Rowley,et al. A Data–Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition , 2014, Journal of Nonlinear Science.
[7] D. Donoho,et al. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data , 2003, Proceedings of the National Academy of Sciences of the United States of America.
[8] Nicolas Le Roux,et al. Learning Eigenfunctions Links Spectral Embedding and Kernel PCA , 2004, Neural Computation.
[9] Martín Abadi,et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems , 2016, ArXiv.
[10] Steven L. Brunton,et al. On dynamic mode decomposition: Theory and applications , 2013, 1312.0041.
[11] S. Brunton,et al. Discovering governing equations from data by sparse identification of nonlinear dynamical systems , 2015, Proceedings of the National Academy of Sciences.
[12] Steven L. Brunton,et al. PySINDy: A Python package for the sparse identification of nonlinear dynamical systems from data , 2020, J. Open Source Softw..
[13] Gaël Varoquaux,et al. Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..
[14] R. Coifman,et al. Geometric harmonics: A novel tool for multiscale out-of-sample extension of empirical functions , 2006 .
[15] Mikhail Belkin,et al. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.
[16] Yuan Yu,et al. TensorFlow: A system for large-scale machine learning , 2016, OSDI.
[17] José R. Dorronsoro,et al. Auto-adaptive multi-scale Laplacian Pyramids for modeling non-uniform data , 2020, Eng. Appl. Artif. Intell..
[18] Skipper Seabold,et al. Statsmodels: Econometric and Statistical Modeling with Python , 2010, SciPy.
[19] Ronald R. Coifman,et al. Heterogeneous Datasets Representation and Learning using Diffusion Maps and Laplacian Pyramids , 2012, SDM.
[20] Stéphane Lafon,et al. Diffusion maps , 2006 .
[21] P. Schmid,et al. Dynamic mode decomposition of numerical and experimental data , 2008, Journal of Fluid Mechanics.
[22] Steven L. Brunton,et al. Dynamic mode decomposition - data-driven modeling of complex systems , 2016 .
[23] Ioannis G. Kevrekidis,et al. Reduced models in chemical kinetics via nonlinear data-mining , 2013, 1307.6849.
[24] Natalia Gimelshein,et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library , 2019, NeurIPS.
[25] Soledad Le Clainche,et al. Higher order dynamic mode decomposition of noisy experimental data: The flow structure of a zero-net-mass-flux jet , 2017 .