Nanolithography with coherent extreme ultraviolet light

Extreme ultraviolet interference lithography (EUV-IL) is a newly developed technique for the production of periodic nano-structures with resolution below 20 nm. The technique is based on coherent radiation that is obtained from undulators at synchrotron radiation laboratories. The high resolution is afforded by small wavelength and practical absence of the proximity effect at this energy. The throughput of this parallel exposing method is much higher than that of the serial electron-beam lithography. Interference schemes based on both reflection (mirrors) and diffraction (gratings) optics have been realized. Both one-dimensional and two-dimensional patterns such as arrays of dots have been achieved. Achromatic interference schemes have been developed to make efficient use of the beam power available from the wideband sources in the extreme ultraviolet region. EUV-IL is used in a growing number of applications; examples include fabrication of self-assembly templates, magnetic nanodot arrays and nano-optical components.

[1]  H. Solak,et al.  EUV Resist Screening: Current Performance and Issues , 2005 .

[2]  Steven R. J. Brueck,et al.  Optical and Interferometric Lithography - Nanotechnology Enablers , 2005, Proceedings of the IEEE.

[3]  J. Goodman Introduction to Fourier optics , 1969 .

[4]  Mark L. Schattenburg,et al.  Large‐area achromatic interferometric lithography for 100 nm period gratings and grids , 1996 .

[5]  A. Toor,et al.  Operation of a normal‐incidence transmission grating monochromator at ALLADIN (invited) , 1989 .

[6]  E. Anderson,et al.  Soft X-ray microscopy at a spatial resolution better than 15 nm , 2005, Nature.

[7]  P. Sciortino,et al.  High-performance optical retarders based on all-dielectric immersion nanogratings. , 2005, Optics letters.

[8]  Roel Moors,et al.  Plasma sources for EUV lithography exposure tools , 2004 .

[9]  H. Solak Space-invariant multiple-beam achromatic EUV interference lithography , 2005 .

[10]  Harun H. Solak,et al.  A new beamline for EUV lithography research , 2001 .

[11]  D W Phillion,et al.  Effects of phase shifts on four-beam interference patterns. , 1998, Applied optics.

[12]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[13]  M. Howells,et al.  High-resolution Fresnel zone plates for x-ray applications by spatial-frequency multiplication , 1987 .

[14]  Li Wang,et al.  Multiple-beam interference lithography with electron beam written gratings , 2002 .

[15]  Kenneth A. Goldberg,et al.  Tunable coherent radiation in the soft X-ray and extreme ultraviolet spectral regions , 1999 .

[16]  Erik H. Anderson,et al.  Patterning a 50‐nm period grating using soft x‐ray spatial frequency multiplication , 1994 .

[17]  Peter Guttmann,et al.  Zone Plates for X-Ray Microscopy , 1984 .

[18]  T Haga,et al.  Soft X-ray multilayer beam splitters. , 1998, Journal of synchrotron radiation.

[19]  J. Simon,et al.  Overcoming pattern collapse of ultra high resolution dense lines obtained with EUV resists , 2005, SPIE Advanced Lithography.

[20]  Yasin Ekinci,et al.  Achromatic spatial frequency multiplication: A method for production of nanometer-scale periodic structures , 2005 .

[21]  Henry I. Smith,et al.  Large-area patterning for photonic crystals via coherent diffraction lithography , 2004 .

[22]  D. Attwood Extreme Ultraviolet Light Sources for Semiconductor Manufacturing , 2004 .

[23]  S. H. Kim,et al.  Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography , 2005 .

[24]  D. Attwood,et al.  Tunable Coherent X-rays , 1985, Science.

[25]  B. Terris,et al.  Nanofabricated and self-assembled magnetic structures as data storage media , 2005 .

[26]  Franco Cerrina,et al.  EUV interferometric lithography for resist characterization , 1999, Advanced Lithography.

[27]  Steven R. J. Brueck,et al.  Interferometric lithography of sub‐micrometer sparse hole arrays for field‐emission display applications , 1996 .

[28]  Hongjie Xu,et al.  Shanghai Synchrotron Radiation Facility , 1999, Proceedings of the 1999 Particle Accelerator Conference (Cat. No.99CH36366).

[29]  Will Conley,et al.  Imaging capabilities of resist in deep ultraviolet liquid immersion interferometric lithography , 2004 .

[30]  U. Flechsig,et al.  Extended SX-700 type monochromator combining normal and grazing incidence optics for a new undulator beamline at SLS , 2001 .

[31]  F. Cerrina,et al.  Extreme ultraviolet and x-ray resist: Comparison study , 1999 .

[32]  P. Nealey,et al.  Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates , 2003, Nature.

[33]  R. G. Denning,et al.  Fabrication of photonic crystals for the visible spectrum by holographic lithography , 2000, Nature.

[34]  Paul Bowen,et al.  Fabrication of large-area ordered arrays of nanoparticles on patterned substrates , 2005 .

[35]  F. Pfeiffer,et al.  Coherent x-ray scattering , 2005 .

[36]  J. Goodman Some fundamental properties of speckle , 1976 .

[37]  Max Born,et al.  Principles of optics - electromagnetic theory of propagation, interference and diffraction of light (7. ed.) , 1999 .

[38]  Yasin Ekinci,et al.  Characterization of extreme ultraviolet resists with interference lithography , 2006 .

[39]  Roger H. French,et al.  Imaging of 32-nm 1:1 lines and spaces using 193-nm immersion interference lithography with second-generation immersion fluids to achieve a numerical aperture of 1.5 and a k[sub 1] of 0.25 , 2005 .

[40]  M. Switkes,et al.  Immersion lithography at 157 nm , 2001 .

[41]  Harun H. Solak,et al.  Exposure of 38 nm period grating patterns with extreme ultraviolet interferometric lithography , 1999 .

[42]  C. David,et al.  Fabrication of high-resolution zone plates with wideband extreme-ultraviolet holography , 2004 .

[43]  F. Cerrina,et al.  Nanolithography using extreme ultraviolet lithography interferometry: 19 nm lines and spaces , 1999 .

[44]  Henry I. Smith,et al.  Spatial period division—A new technique for exposing submicrometer‐linewidth periodic and quasiperiodic patterns , 1979 .

[45]  C. David,et al.  Bilayer Al wire-grids as broadband and high-performance polarizers. , 2006, Optics express.

[46]  Kenneth A. Goldberg,et al.  Testing extreme ultraviolet optics with visible-light and extreme ultraviolet interferometry , 2002 .

[47]  R. Schaller,et al.  Moore's law: past, present and future , 1997 .

[48]  Franco Cerrina,et al.  Guided Self-Assembly of Symmetric Diblock Copolymer Films on Chemically Nanopatterned Substrates , 2000 .

[49]  Harun H. Solak,et al.  Sub-50 nm period patterns with EUV interference lithography , 2003 .

[50]  Laura J. Heyderman,et al.  Arrays of nanoscale magnetic dots: Fabrication by x-ray interference lithography and characterization , 2004 .

[51]  S. Brueck,et al.  Imaging interferometric lithography: approaching the resolution limits of optics. , 1999, Optics letters.

[52]  E. W. Edwards,et al.  Precise Control over Molecular Dimensions of Block‐Copolymer Domains Using the Interfacial Energy of Chemically Nanopatterned Substrates , 2004 .

[53]  S. Chou,et al.  Imprint Lithography with 25-Nanometer Resolution , 1996, Science.