Programming Reaction-Diffusion Processors

In reaction-diffusion (RD) processors, both the data and the results of the computation are encoded as concentration profiles of the reagents. The computation is performed via the spreading and interaction of wave fronts. Most prototypes of RD computers are specialized to solve certain problems, they can not be, in general, re-programmed. In the paper, we try to show possible means of overcoming this drawback. We envisage an architecture and interface of programmable RD media capable of solving a wide range of problems.

[1]  Tetsuya Asai,et al.  Towards reaction–diffusion computing devices based on minority-carrier transport in semiconductors , 2004 .

[2]  O. Tabata,et al.  Ciliary motion actuator using self-oscillating gel , 2001, Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090).

[3]  Jichang Wang,et al.  Light-induced pattern formation in the excitable Belousov–Zhabotinsky medium , 2001 .

[4]  Leon O. Chua,et al.  Cellular Neural Networks and Visual Computing: Foundations and Applications , 2002 .

[5]  Andrew Adamatzky,et al.  Reaction–diffusion path planning in a hybrid chemical and cellular-automaton processor , 2003 .

[6]  N G Rambidi,et al.  Finding paths in a labyrinth based on reaction-diffusion media. , 1999, Bio Systems.

[7]  Andrew Adamatzky,et al.  Experimental reaction–diffusion pre-processor for shape recognition , 2002 .

[8]  Ángel Rodríguez-Vázquez,et al.  Reaction-diffusion navigation robot control: from chemical to VLSI analogic processors , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[9]  Andrew Adamatzky,et al.  Collision-based computing in Belousov–Zhabotinsky medium , 2004 .

[10]  H. Sevcikova,et al.  Chenical waves in electric field , 1983 .

[11]  G. Dewel,et al.  Reaction–Diffusion Patterns in Confined Chemical Systems , 2000 .

[12]  P. Ortoleva,et al.  Experiments on electric field-BZ chemical wave interactions: Annihilation and the crescent wave , 1981 .

[13]  L. Kuhnert,et al.  Photochemische Manipulation von chemischen Wellen , 1986, Naturwissenschaften.

[14]  V. Davydov,et al.  General properties of the electric-field-induced vortex drift in excitable media , 1996 .

[15]  Pattern dynamics in inhomogeneous active media , 2001 .

[16]  H. Sevcikova,et al.  Chemical front waves in an electric field , 1984 .

[17]  Takahiro Asai A CMOS Reaction-Diffusion Circuit Based on Cellular-Automaton Processing Emulating the Belousov-Zhabotinsky Reaction , 2002 .

[18]  H. Engel,et al.  WAVE PROPAGATION IN HETEROGENEOUS EXCITABLE MEDIA , 1998 .

[19]  Jerzy Gorecki,et al.  On the response of simple reactors to regular trains of pulses , 2002 .

[20]  Electric-field-induced drift and deformation of spiral waves in an excitable medium. , 1992, Physical review letters.

[21]  Tomohiko Yamaguchi,et al.  Finding the optimal path with the aid of chemical wave , 1997 .

[22]  Kenneth Showalter,et al.  Logic gates in excitable media , 1995 .

[23]  F. W. Schneider,et al.  Control and coupling of spiral waves in excitable media. , 2002, Faraday discussions.

[24]  Andrew Adamatzky,et al.  Three-valued logic gates in reaction–diffusion excitable media , 2005 .

[25]  Marco Masia,et al.  Effect of temperature in a closed unstirred Belousov-Zhabotinsky system , 2001 .

[26]  L. Chua Cnn: A Paradigm for Complexity , 1998 .

[27]  Andrew Adamatzky Reaction-Diffusion and Excitable Processors: A Sense of the Unconventional , 2000, Scalable Comput. Pract. Exp..

[28]  Andrew Adamatzky,et al.  Computing with Waves in Chemical Media : Massively Parallel Reaction-Diffusion Processors( New System Paradigms for Integrated Electronics) , 2004 .

[29]  Valentina Beato,et al.  Pulse propagation in a model for the photosensitive Belousov-Zhabotinsky reaction with external noise , 2003, SPIE International Symposium on Fluctuations and Noise.

[30]  Tetsuya Asai,et al.  Biomorphic analog devices based on reaction-diffusion systems , 2003, 33rd International Symposium on Multiple-Valued Logic, 2003. Proceedings..

[31]  Andrew Adamatzky,et al.  Computing in nonlinear media and automata collectives , 2001 .

[32]  P. Ortoleva Chemical wave—electrical field interaction phenomena , 1987 .

[33]  Etsuro Yokoyama,et al.  Initiation Front and Annihilation Center of Convection Waves Developing in Spiral Structures of Belousov-Zhabotinsky Reaction , 1997 .

[34]  Kenichi Yoshikawa,et al.  Information operations with multiple pulses on an excitable field , 2003 .

[35]  Mitsuru Yoneyama,et al.  Optical modification of wave dynamics in a surface layer of the Mn-catalyzed Belousov-Zhabotinsky reaction , 1996 .

[36]  Kenichi Yoshikawa,et al.  On Chemical Reactors That Can Count , 2003 .

[37]  Tetsuya Asai,et al.  Analog CMOS Implementation of Diffusive Lotka-Volterra Neural Networks , 2001 .

[38]  K. Showalter,et al.  Navigating Complex Labyrinths: Optimal Paths from Chemical Waves , 1995, Science.

[39]  I. Schreiber,et al.  Reduction waves in the BZ reaction: circles, spirals and effects of electric field , 1995 .

[40]  Andrew Adamatzky,et al.  Experimental Reaction–Diffusion Chemical Processors for Robot Path Planning , 2003, J. Intell. Robotic Syst..

[41]  H. Engel,et al.  Experimental study of the dynamics of spiral pairs in light-sensitive Belousov–Zhabotinskii media using an open-gel reactor , 2000 .

[42]  Two-dimensional Turing-like patterns in the PA-MBO-System and effects of an electric field , 1996 .

[43]  Andrew Adamatzky,et al.  On some limitations of reaction–diffusion chemical computers in relation to Voronoi diagram and its inversion , 2003 .

[44]  Andrew Adamatzky,et al.  Experimental logical gates in a reaction-diffusion medium: the XOR gate and beyond. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  N. G. Rambidi,et al.  Image processing using light-sensitive chemical waves , 2002 .

[46]  Stefan Müller,et al.  Spiral wave dynamics under pulsatory modulation of excitability , 1996 .