Dissolution of sulfuric acid tetrahydrate at low temperatures and subsequent growth of nitric acid trihydrate

Crystalline sulfuric acid tetrahydrate (SAT) has been observed to change phase at temperatures below its melting point, in agreement with recent theoretical predictions of deliquescence. Dissolution of SAT was observed in 63% of experiments expected to show a phase change, leading to formation of a ternary HNO 3 /H 2 SO 4 /H 2 O solution. This solution, which still contained a portion of the original solid SAT, crystallized to form nitric acid trihydrate (NAT). NAT then continued to grow by condensation of additional nitric acid and water at temperatures several degrees above the ice frost point. This process of SAT dissolution followed by NAT crystallization and growth may offer a mechanism for the formation of type Ia polar stratospheric clouds on frozen sulfate aerosols when S NAT > 15.

[1]  G. Brasseur,et al.  Simultaneous observations of polar stratospheric clouds and HNO3 over Scandinavia in January, 1992 , 1997 .

[2]  A. Middlebrook,et al.  Laboratory studies of the formation of polar stratospheric clouds: Nitric acid condensation on thin sulfuric acid films , 1995 .

[3]  Mark Z. Jacobson,et al.  A model for studying the composition and chemical effects of stratospheric aerosols , 1994 .

[4]  Stanley C. Solomon,et al.  The mystery of the Antarctic Ozone “Hole” , 1988 .

[5]  W. Hook,et al.  Vapor pressure of ice between +10-2 and -1020 , 1970 .

[6]  A. J. Miller,et al.  A comparison of Arctic lower stratospheric winter temperatures for 1988–89 with temperatures since 1964 , 1990 .

[7]  E. Browell,et al.  An analysis of lidar observations of polar stratospheric clouds , 1990 .

[8]  K. Carslaw,et al.  Melting of H2SO4·4H2O Particles upon Cooling: Implications for Polar Stratospheric Clouds , 1996, Science.

[9]  P. Hamill,et al.  Freezing behavior of stratospheric sulfate aerosols inferred from trajectory studies , 1995 .

[10]  J. Bacmeister,et al.  Observational constraints on the formation of type ia polar stratospheric clouds , 1996 .

[11]  G. Toon,et al.  Heterogeneous Reaction Probabilities, Solubilities, and the Physical State of Cold Volcanic Aerosols , 1993, Science.

[12]  G. Gobbi,et al.  Mechanisms of formation of stratospheric clouds observed during the Antarctic late winter of 1992 , 1993 .

[13]  Timo Vesala,et al.  On the theories of type 1 polar stratospheric cloud formation , 1995 .

[14]  Laurie S. McNeill,et al.  Fourier transform-infrared studies of thin H2SO4/H2O films: Formation, water uptake, and solid-liquid phase changes , 1993 .

[15]  M. Tolbert Polar Clouds and Sulfate Aerosols , 1996, Science.

[16]  J. Rosen,et al.  Deliquescence and freezing of stratospheric aerosol observed by balloonborne backscattersondes , 1995 .

[17]  D. Fahey,et al.  The Arctic polar stratospheric cloud aerosol: Aircraft measurements of reactive nitrogen, total water, and particles , 1992 .

[18]  David R. Hanson,et al.  Laboratory studies of the nitric acid trihydrate: Implications for the south polar stratosphere , 1988 .

[19]  R. Turco,et al.  Heterogeneous physicochemistry of the polar ozone hole , 1989 .

[20]  Richard Swinbank,et al.  Comparison of U.K. Meteorological Office and U.S. National Meteorological Center stratospheric analyses during northern and southern winter , 1996 .

[21]  A. Prenni,et al.  Crystallization Kinetics of Nitric Acid Dihydrate Aerosols , 1996 .

[22]  L. Froidevaux,et al.  UARS Microwave Limb Sounder HNO3 observations: Implications for Antarctic polar stratospheric clouds , 1998 .

[23]  A. Middlebrook,et al.  Characterization of model polar stratospheric cloud films using Fourier transform infrared spectroscopy and temperature programmed desorption , 1992 .

[24]  P. Crutzen,et al.  Do stratospheric aerosol droplets freeze above the ice frost point , 1995 .

[25]  M. Molina,et al.  Composition and freezing of aqueous H2SO4/HNO3 solutions under polar stratospheric conditions , 1994 .

[26]  M. Molina,et al.  Formation of polar stratospheric clouds on preactivated background aerosols , 1996 .

[27]  J. Devlin,et al.  Infrared spectra of nitric and hydrochloric acid hydrate thin films , 1991 .

[28]  Paul J. Crutzen,et al.  Stratospheric aerosol growth and HNO3 gas phase depletion from coupled HNO3 and water uptake by liquid particles , 1994 .

[29]  P. Crutzen,et al.  Freezing of HNO3/H2SO4/H2O Solutions at Stratospheric Temperatures: Nucleation Statistics and Experiments , 1997 .

[30]  Takashi Shibata,et al.  Polar stratospheric clouds observed by lidar over Spitsbergen in the winter of 1994/1995: Liquid particles and vertical “sandwich” structure , 1997 .

[31]  O. Toon,et al.  The presence of metastable HNO3/H2O solid phases in the stratosphere inferred from ER 2 data , 1996 .

[32]  K. Kelly,et al.  Particle size distributions in Arctic polar stratospheric clouds, growth and freezing of sulfuric acid droplets, and implications for cloud formation , 1992 .

[33]  N. S. Higdon,et al.  Airborne lidar observations in the wintertime Arctic stratosphere: Polar stratospheric clouds , 1990 .

[34]  M. Molina,et al.  Physical chemistry of the sulfuric acid/water binary system at low temperatures: stratospheric implications , 1993 .

[35]  M. Zahniser,et al.  Vapor Pressures of Solid Hydrates of Nitric Acid: Implications for Polar Stratospheric Clouds , 1993, Science.