Photothermal confocal spectromicroscopy of multiple cellular chromophores and fluorophores.

[1]  J. Lichtman,et al.  Fluorescence microscopy , 2005 .

[2]  William E. Moerner,et al.  Persistent Spectral Hole-Burning: Science and Applications , 2012 .

[3]  Alexander M Seifalian,et al.  Fluorescence nanoparticles “quantum dots” as drug delivery system and their toxicity: a review , 2011, Journal of drug targeting.

[4]  Sanshiro Hanada,et al.  Toxicity of nanocrystal quantum dots: the relevance of surface modifications , 2011, Archives of Toxicology.

[5]  Brahim Lounis,et al.  Direct investigation of intracellular presence of gold nanoparticles via photothermal heterodyne imaging. , 2011, ACS nano.

[6]  Vladimir P. Zharov,et al.  Ultrasharp nonlinear photothermal and photoacoustic resonances and holes beyond the spectral limit , 2011, Nature photonics.

[7]  Vladimir P Zharov,et al.  Ultrasensitive label‐free photothermal imaging, spectral identification, and quantification of cytochrome c in mitochondria, live cells, and solutions , 2010, Journal of biophotonics.

[8]  F. Hodi,et al.  Isolation of tumorigenic circulating melanoma cells. , 2010, Biochemical and biophysical research communications.

[9]  Vladimir P Zharov,et al.  Photothermal multispectral image cytometry for quantitative histology of nanoparticles and micrometastasis in intact, stained and selectively burned tissues , 2010, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[10]  Paul V. Ruijgrok,et al.  Room-Temperature Detection of a Single Molecule’s Absorption by Photothermal Contrast , 2010, Science.

[11]  D. Meller,et al.  Expression of MCSP and PRAME in conjunctival melanoma , 2010, British Journal of Ophthalmology.

[12]  Alma L. Burlingame,et al.  Widespread Protein Aggregation as an Inherent Part of Aging in C. elegans , 2010, PLoS biology.

[13]  V. Ntziachristos Going deeper than microscopy: the optical imaging frontier in biology , 2010, Nature Methods.

[14]  Ekaterina I. Galanzha,et al.  Ultra-fast photoacoustic flow cytometry with a 0.5 MHz pulse repetition rate nanosecond laser , 2010, Optics express.

[15]  Wei Min,et al.  Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy , 2010 .

[16]  M. Roth,et al.  Mitochondrial Dysfunction Confers Resistance to Multiple Drugs in Caenorhabditis elegans , 2010, Molecular biology of the cell.

[17]  S. Bialkowski,et al.  Pulsed laser excited photothermal lens spectrometry of cadmium sulfoselenide doped silica glasses , 2010 .

[18]  Vladimir P Zharov,et al.  In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser. , 2009, Cancer research.

[19]  V. Zharov,et al.  Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents. , 2009, Nature nanotechnology.

[20]  H. Ewers,et al.  Probing the dynamics of protein-protein interactions at neuronal contacts by optical imaging. , 2008, Chemical reviews.

[21]  L. Cognet,et al.  Photothermal methods for single nonluminescent nano-objects. , 2008, Analytical chemistry.

[22]  J. Thaden,et al.  Remarkable longevity and stress resistance of nematode PI3K‐null mutants , 2008, Aging cell.

[23]  A. V. Brusnichkin,et al.  Photothermal Lens Detection of Gold Nanoparticles: Theory and Experiments , 2007, Applied spectroscopy.

[24]  Gerhard A Blab,et al.  Label-free optical imaging of mitochondria in live cells. , 2007, Optics express.

[25]  V. Tuchin,et al.  Photothermal flow cytometry in vitro for detection and imaging of individual moving cells , 2007, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[26]  V. Zharov,et al.  Superhigh-sensitivity photothermal monitoring of individual cell response to antitumor drug. , 2006, Journal of biomedical optics.

[27]  V. Loriette,et al.  Confocal Dual-Beam Thermal-Lens Microscope: Model and Experimental Results , 2006 .

[28]  Valery V Tuchin,et al.  In vivo photothermal flow cytometry: Imaging and detection of individual cells in blood and lymph flow , 2006, Journal of cellular biochemistry.

[29]  V. Zharov,et al.  Photothermal imaging of nanoparticles and cells , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[30]  Rafael Yuste,et al.  Fluorescence microscopy today , 2005, Nature Methods.

[31]  Valery V Tuchin,et al.  Integrated photothermal flow cytometry in vivo. , 2005, Journal of biomedical optics.

[32]  Vladimir P Zharov,et al.  Nanocluster model of photothermal assay: application for high-sensitive monitoring of nicotine-induced changes in metabolism, apoptosis, and necrosis at a cellular level. , 2005, Journal of biomedical optics.

[33]  Francis L Martin,et al.  Monitoring cell cycle distributions in MCF-7 cells using near-field photothermal microspectroscopy. , 2005, Biophysical journal.

[34]  Valery V. Tuchin,et al.  Confocal photothermal flow cytometry in vivo , 2005, SPIE BiOS.

[35]  Valery V Tuchin,et al.  Photothermal image flow cytometry in vivo. , 2005, Optics letters.

[36]  M. Proskurnin,et al.  Modern analytical thermooptical spectroscopy , 2004 .

[37]  M. Nolte,et al.  Effects of fluorescent and nonfluorescent tracing methods on lymphocyte migration in vivo , 2004, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[38]  Vincent Loriette,et al.  Confocal thermal-lens microscope. , 2004, Optics letters.

[39]  B. Dalby,et al.  Advanced transfection with Lipofectamine 2000 reagent: primary neurons, siRNA, and high-throughput applications. , 2004, Methods.

[40]  D. Choquet,et al.  Single metallic nanoparticle imaging for protein detection in cells , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[41]  V. Zharov Far-field photothermal microscopy beyond the diffraction limit. , 2003, Optics letters.

[42]  V. Zharov,et al.  Photothermal time‐resolved imaging of living cells , 2002, Lasers in surgery and medicine.

[43]  James Y. Suen,et al.  Photothermal/microwave radiometry for imaging and temperature feedback , 2002, SPIE BiOS.

[44]  Ove Axner,et al.  Stress response in Caenorhabditis elegans caused by optical tweezers: wavelength, power, and time dependence. , 2002, Biophysical journal.

[45]  Takehiko Kitamori,et al.  Single-cell analysis by a scanning thermal lens microscope with a microchip: direct monitoring of cytochrome c distribution during apoptosis process. , 2002, Analytical chemistry.

[46]  T. Kitamori,et al.  Assay of spherical cell surface molecules by thermal lens microscopy and its application to blood cell substances. , 2001, Analytical chemistry.

[47]  C. Contag,et al.  Advance in contrast agents, reporters, and detection. , 2001, Journal of biomedical optics.

[48]  G. Nash,et al.  Effects of fluorescent dyes on selectin and integrin-mediated stages of adhesion and migration of flowing leukocytes. , 2000, Journal of immunological methods.

[49]  B. D. de Grooth,et al.  Experimental and model investigations of bleaching and saturation of fluorescence in flow cytometry. , 1997, Cytometry.

[50]  T. Ohhashi,et al.  Inhibitory effects of fluorescein isothiocyanate photoactivation on lymphatic pump activity. , 1997, Microvascular research.

[51]  H. Lehr,et al.  Intravital Fluorescence Microscopy: Impact of Light-induced Phototoxicity on Adhesion of Fluorescently Labeled Leukocytes , 1997, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[52]  A. Halestrap,et al.  Oxidative Stress, Thiol Reagents, and Membrane Potential Modulate the Mitochondrial Permeability Transition by Affecting Nucleotide Binding to the Adenine Nucleotide Translocase* , 1997, The Journal of Biological Chemistry.

[53]  Stephen E. Bialkowski,et al.  Photothermal spectroscopy methods for chemical analysis , 1995 .

[54]  J. Zdolsek Acridine orange‐mediated photodamage to cultured cells , 1993, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[55]  Norman J. Dovichi,et al.  Fresnel diffraction theory for steady‐state thermal lens measurements in thin films , 1990 .

[56]  I. Fidler,et al.  Influence of organ microenvironment on pigmentation of a metastatic murine melanoma. , 1988, Cancer research.

[57]  B. O. Davis,et al.  Total luminescence spectroscopy of fluorescence changes during aging in Caenorhabditis elegans. , 1982, Biochemistry.

[58]  S. Goldstein,et al.  Status of mitochondria in living human fibroblasts during growth and senescence in vitro: use of the laser dye rhodamine 123 , 1981, The Journal of cell biology.

[59]  E R Nestmann,et al.  Mutagenic activity of rhodamine dyes and their impurities as detected by mutation induction in Salmonella and DNA damage in Chinese hamster ovary cells. , 1979, Cancer research.

[60]  R. Morimoto,et al.  Protein homeostasis in models of aging and age-related conformational disease. , 2010, Advances in experimental medicine and biology.

[61]  G. A. Blab,et al.  Optical readout of gold nanoparticle-based DNA microarrays without silver enhancement. , 2006, Biophysical journal.

[62]  J. Kaur,et al.  Transfection of nonmelanocytic cells with tyrosinase gene constructs for survival studies , 2001, Environmental and molecular mutagenesis.

[63]  M. Götte,et al.  Functions of cell surface heparan sulfate proteoglycans. , 1999, Annual review of biochemistry.

[64]  J. Slavik,et al.  Fluorescence Microscopy and Fluorescent Probes , 1996, Springer US.

[65]  H. Sakagami,et al.  Antiplasmid and carcinogenic molecular orbitals of benz[c]acridine and related compounds. , 1993, Anticancer research.

[66]  Vladimir P. Zharov,et al.  Laser optoacoustic spectroscopy , 1986 .