Generalized Stirling permutations, families of increasing trees and urn models

Bona (2007) [6] studied the distribution of ascents, plateaux and descents in the class of Stirling permutations, introduced by Gessel and Stanley (1978) [13]. Recently, Janson (2008) [17] showed the connection between Stirling permutations and plane recursive trees and proved a joint normal law for the parameters considered by Bona. Here we will consider generalized Stirling permutations extending the earlier results of Bona (2007) [6] and Janson (2008) [17], and relate them with certain families of generalized plane recursive trees, and also (k+1)-ary increasing trees. We also give two different bijections between certain families of increasing trees, which both give as a special case a bijection between ternary increasing trees and plane recursive trees. In order to describe the (asymptotic) behaviour of the parameters of interests, we study three (generalized) Polya urn models using various methods.

[1]  Ira M. Gessel,et al.  Stirling Polynomials , 1978, J. Comb. Theory, Ser. A.

[2]  Norman L. Johnson,et al.  Urn models and their application , 1977 .

[3]  Helmut Prodinger,et al.  Level of nodes in increasing trees revisited , 2007, Random Struct. Algorithms.

[4]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[5]  Francesco Brenti,et al.  Hilbert Polynomials in Combinatorics , 1998 .

[6]  Robert T. Smythe,et al.  Poisson approximations for functionals of random trees , 1996, Random Struct. Algorithms.

[7]  Svante Janson Functional limit theorems for multitype branching processes , 2004 .

[8]  Béla Bollobás,et al.  Mathematical results on scale‐free random graphs , 2005 .

[9]  G. Pólya,et al.  Über die Statistik verketteter Vorgänge , 1923 .

[10]  Jean Bertoin,et al.  Random fragmentation and coagulation processes , 2006 .

[11]  Philippe Flajolet,et al.  Average-Case Analysis of Algorithms and Data Structures , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[12]  Philippe Flajolet,et al.  Some exactly solvable models of urn process theory , 2006 .

[13]  Philippe Flajolet,et al.  Varieties of Increasing Trees , 1992, CAAP.

[14]  J. Pitman,et al.  Size-biased sampling of Poisson point processes and excursions , 1992 .

[15]  H. Prodinger,et al.  Level of nodes in increasing trees revisited , 2007 .

[16]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[17]  Svante Janson,et al.  Limit theorems for triangular urn schemes , 2006 .

[18]  Svante Janson Asymptotic degree distribution in random recursive trees , 2005 .

[19]  F. Brenti,et al.  Unimodal, log-concave and Pólya frequency sequences in combinatorics , 1989 .

[20]  H. Wilf generatingfunctionology: Third Edition , 1990 .

[21]  SenungKyung Park,et al.  The r-Multipermutations , 1994, J. Comb. Theory, Ser. A.

[22]  SeungKyung Park,et al.  P-Partitioins and q-Stirling Numbers , 1994, J. Comb. Theory, Ser. A.

[23]  SeungKyung Park,et al.  Inverse descents of r-multipermutations , 1994, Discret. Math..

[24]  Barry D Hughes,et al.  Stochastically evolving networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Robert T. Smythe,et al.  Poisson approximations for functionals of random trees , 1996 .

[26]  Miklós Bóna,et al.  Real Zeros and Normal Distribution for Statistics on Stirling Permutations Defined by Gessel and Stanley , 2007, SIAM J. Discret. Math..

[27]  G. Pólya,et al.  Sur quelques points de la théorie des probabilités , 1930 .

[28]  Svante Janson Plane recursive trees, Stirling permutations and an urn model , 2008 .

[29]  R. Arratia,et al.  Logarithmic Combinatorial Structures: A Probabilistic Approach , 2003 .

[30]  Jim Pitman,et al.  Arcsine Laws and Interval Partitions Derived from a Stable Subordinator , 1992 .

[31]  Alois Panholzer,et al.  On the degree distribution of the nodes in increasing trees , 2007, J. Comb. Theory, Ser. A.

[32]  J. Pitman,et al.  The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator , 1997 .

[33]  V. E. Stepanov Limit Distributions of Certain Characteristics of Random Mappings , 1969 .

[34]  S. Bornholdt,et al.  Handbook of Graphs and Networks , 2012 .

[35]  D. J. Aldous Brownian bridge asymptotics for random mappings , 1992, Advances in Applied Probability.