Generalized Stirling permutations, families of increasing trees and urn models
暂无分享,去创建一个
[1] Ira M. Gessel,et al. Stirling Polynomials , 1978, J. Comb. Theory, Ser. A.
[2] Norman L. Johnson,et al. Urn models and their application , 1977 .
[3] Helmut Prodinger,et al. Level of nodes in increasing trees revisited , 2007, Random Struct. Algorithms.
[4] Philippe Flajolet,et al. Analytic Combinatorics , 2009 .
[5] Francesco Brenti,et al. Hilbert Polynomials in Combinatorics , 1998 .
[6] Robert T. Smythe,et al. Poisson approximations for functionals of random trees , 1996, Random Struct. Algorithms.
[7] Svante Janson. Functional limit theorems for multitype branching processes , 2004 .
[8] Béla Bollobás,et al. Mathematical results on scale‐free random graphs , 2005 .
[9] G. Pólya,et al. Über die Statistik verketteter Vorgänge , 1923 .
[10] Jean Bertoin,et al. Random fragmentation and coagulation processes , 2006 .
[11] Philippe Flajolet,et al. Average-Case Analysis of Algorithms and Data Structures , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.
[12] Philippe Flajolet,et al. Some exactly solvable models of urn process theory , 2006 .
[13] Philippe Flajolet,et al. Varieties of Increasing Trees , 1992, CAAP.
[14] J. Pitman,et al. Size-biased sampling of Poisson point processes and excursions , 1992 .
[15] H. Prodinger,et al. Level of nodes in increasing trees revisited , 2007 .
[16] J. Van Leeuwen,et al. Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .
[17] Svante Janson,et al. Limit theorems for triangular urn schemes , 2006 .
[18] Svante Janson. Asymptotic degree distribution in random recursive trees , 2005 .
[19] F. Brenti,et al. Unimodal, log-concave and Pólya frequency sequences in combinatorics , 1989 .
[20] H. Wilf. generatingfunctionology: Third Edition , 1990 .
[21] SenungKyung Park,et al. The r-Multipermutations , 1994, J. Comb. Theory, Ser. A.
[22] SeungKyung Park,et al. P-Partitioins and q-Stirling Numbers , 1994, J. Comb. Theory, Ser. A.
[23] SeungKyung Park,et al. Inverse descents of r-multipermutations , 1994, Discret. Math..
[24] Barry D Hughes,et al. Stochastically evolving networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.
[25] Robert T. Smythe,et al. Poisson approximations for functionals of random trees , 1996 .
[26] Miklós Bóna,et al. Real Zeros and Normal Distribution for Statistics on Stirling Permutations Defined by Gessel and Stanley , 2007, SIAM J. Discret. Math..
[27] G. Pólya,et al. Sur quelques points de la théorie des probabilités , 1930 .
[28] Svante Janson. Plane recursive trees, Stirling permutations and an urn model , 2008 .
[29] R. Arratia,et al. Logarithmic Combinatorial Structures: A Probabilistic Approach , 2003 .
[30] Jim Pitman,et al. Arcsine Laws and Interval Partitions Derived from a Stable Subordinator , 1992 .
[31] Alois Panholzer,et al. On the degree distribution of the nodes in increasing trees , 2007, J. Comb. Theory, Ser. A.
[32] J. Pitman,et al. The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator , 1997 .
[33] V. E. Stepanov. Limit Distributions of Certain Characteristics of Random Mappings , 1969 .
[34] S. Bornholdt,et al. Handbook of Graphs and Networks , 2012 .
[35] D. J. Aldous. Brownian bridge asymptotics for random mappings , 1992, Advances in Applied Probability.