A stress improvement procedure

In this paper, we present a novel procedure to improve the stress predictions in static, dynamic and nonlinear analyses of solids. We focus on the use of low-order displacement-based finite elements - 3-node and 4-node elements in two-dimensional (2D) solutions, and 4-node and 8-node elements in 3D solutions - because these elements are computationally efficient provided good stress convergence is obtained. We give a variational basis of the new procedure and compare the scheme, and its performance, with other effective previously proposed stress improvement techniques. We observe that the stresses of the new procedure converge quadratically in 1D and 2D solutions, i.e. with the same order as the displacements, and conclude that the new procedure shows much promise for the analysis of solids, structures and multiphysics problems, to calculate improved stress predictions and to establish error measures.

[1]  J. Barlow,et al.  Optimal stress locations in finite element models , 1976 .

[2]  John F. Abel,et al.  On mixed finite element formulations and stress recovery techniques , 2000 .

[3]  J. Bramble,et al.  Higher order local accuracy by averaging in the finite element method , 1977 .

[4]  Nils-Erik Wiberg,et al.  Enhanced Superconvergent Patch Recovery incorporating equilibrium and boundary conditions , 1994 .

[5]  K. Bathe,et al.  Review: A posteriori error estimation techniques in practical finite element analysis , 2005 .

[6]  Erwin Stein,et al.  Equilibrium method for postprocessing and error estimation in the finite element method , 2006 .

[7]  Ted Belytschko,et al.  Superconvergent patch recovery with equilibrium and conjoint interpolant enhancements , 1994 .

[8]  Chi King Lee,et al.  On using different recovery procedures for the construction of smoothed stress in finite element method , 1998 .

[9]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[10]  Phill-Seung Lee,et al.  Measuring the convergence behavior of shell analysis schemes , 2011 .

[11]  Klaus-Jürgen Bathe,et al.  Improved stresses for the 4-node tetrahedral element , 2011 .

[12]  Francesco Ubertini,et al.  A posteriori error estimation based on the superconvergent Recovery by Compatibility in Patches , 2006 .

[13]  K. Bathe Conserving energy and momentum in nonlinear dynamics: A simple implicit time integration scheme , 2007 .

[14]  J. T. Oden,et al.  On the calculation of consistent stress distributions in finite element approximations , 1971 .

[15]  Bijan Boroomand,et al.  RECOVERY BY EQUILIBRIUM IN PATCHES (REP) , 1997 .

[16]  K. Bathe Finite Element Procedures , 1995 .

[17]  H. Kardestuncer,et al.  Finite element handbook , 1987 .

[18]  Klaus-Jürgen Bathe,et al.  The use of nodal point forces to improve element stresses , 2011 .

[19]  Francesco Ubertini,et al.  Patch recovery based on complementary energy , 2004 .

[20]  K. Bathe,et al.  Studies of finite element procedures—stress band plots and the evaluation of finite element meshes , 1986 .

[21]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[22]  Ayech Benjeddou,et al.  Advances in piezoelectric finite element modeling of adaptive structural elements: a survey , 2000 .

[23]  K. Bathe,et al.  The Mechanics of Solids and Structures - Hierarchical Modeling and the Finite Element Solution , 2011 .

[24]  Klaus-Jürgen Bathe,et al.  Studies of finite element procedures—On mesh selection , 1985 .

[25]  John S. Campbell,et al.  Local and global smoothing of discontinuous finite element functions using a least squares method , 1974 .

[26]  D. Griffin,et al.  Finite-Element Analysis , 1975 .

[27]  Thomas Grätsch,et al.  Review: A posteriori error estimation techniques in practical finite element analysis , 2005 .

[28]  D. Chapelle,et al.  The Finite Element Analysis of Shells - Fundamentals , 2003 .

[29]  Francesco Ubertini,et al.  Adaptivity based on the recovery by compatibility in patches , 2010 .

[30]  Erwin Stein,et al.  On the stress computation in finite element models based upon displacement approximations , 1974 .

[31]  K. Bathe,et al.  Insight into an implicit time integration scheme for structural dynamics , 2012 .

[32]  Dominique Chapelle,et al.  On the ellipticity condition for model-parameter dependent mixed formulations , 2010 .

[33]  S. Ohnimus,et al.  Local error estimates of FEM for displacements and stresses in linear elasticity by solving local Neumann problems , 2001 .

[34]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[35]  Nils-Erik Wiberg,et al.  Patch recovery based on superconvergent derivatives and equilibrium , 1993 .

[36]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[37]  Taeoh Lee,et al.  A SUPERCONVERGENT STRESS RECOVERY TECHNIQUE WITH EQUILIBRIUM CONSTRAINT , 1997 .

[38]  Klaus-Jürgen Bathe,et al.  On higher-order-accuracy points in isoparametric finite element analysis and an application to error assessment , 2001 .

[39]  F. Brezzi,et al.  A discourse on the stability conditions for mixed finite element formulations , 1990 .

[40]  Klaus-Jürgen Bathe,et al.  The inf–sup condition and its evaluation for mixed finite element methods , 2001 .

[41]  Bijan Boroomand,et al.  An improved REP recovery and the effectivity robustness test , 1997 .

[42]  Erwin Stein,et al.  An equilibrium method for stress calculation using finite element displacement models , 1977 .

[43]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .