Second-order cone programming formulations for a class of problems in structural optimization

This paper provides efficient and easy to implement formulations for two problems in structural optimization as second-order cone programming (SOCP) problems based on the minimum compliance method and derived using the principle of complementary energy. In truss optimization both single and multiple loads (where we optimize the worst-case compliance) are considered. By using a heuristic which is based on the SOCP duality we can consider a simple ground structure and add only the members which improve the compliance of the structure. It is also shown that thickness optimization is a problem similar to truss optimization. Examples are given to illustrate the method developed in this paper.

[1]  Uri Kirsch,et al.  Optimal topologies of truss structures , 1989 .

[2]  Osvaldo M. Querin,et al.  Growth method for size, topology, and geometry optimization of truss structures , 2006 .

[3]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[4]  M. Zhou,et al.  The COC algorithm, Part II: Topological, geometrical and generalized shape optimization , 1991 .

[5]  Aharon Ben-Tal,et al.  Lectures on modern convex optimization , 1987 .

[6]  Michael Stingl,et al.  PENNON: A code for convex nonlinear and semidefinite programming , 2003, Optim. Methods Softw..

[7]  Yi Min Xie,et al.  Evolutionary Structural Optimization , 1997 .

[8]  Stephen P. Boyd,et al.  Applications of second-order cone programming , 1998 .

[9]  G. Rozvany Stress ratio and compliance based methods in topology optimization – a critical review , 2001 .

[10]  Arkadi Nemirovski,et al.  Robust Truss Topology Design via Semidefinite Programming , 1997, SIAM J. Optim..

[11]  M. Gilbert,et al.  Layout optimization of large‐scale pin‐jointed frames , 2003 .

[12]  Andy J. Keane,et al.  A parallel nodal-based evolutionary structural optimization algorithm , 2002 .

[13]  Kim-Chuan Toh,et al.  Solving semidefinite-quadratic-linear programs using SDPT3 , 2003, Math. Program..

[14]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[15]  Makoto Ohsaki,et al.  Topology optimization of trusses by growing ground structure method , 2009 .

[16]  Martin P. Bendsøe,et al.  A New Method for Optimal Truss Topology Design , 1993, SIAM J. Optim..

[17]  Yi Min Xie,et al.  Evolutionary thickness design with stiffness maximization and stress minimization criteria , 2001 .

[18]  W. Achtziger On simultaneous optimization of truss geometry and topology , 2007 .

[19]  Erling D. Andersen,et al.  On implementing a primal-dual interior-point method for conic quadratic optimization , 2003, Math. Program..

[20]  Florian Jarre,et al.  Optimal Truss Design by Interior-Point Methods , 1998, SIAM J. Optim..

[21]  Harvey J. Greenberg,et al.  Automatic design of optimal structures , 1964 .

[22]  Wolfgang Achtziger Truss topology optimization including bar properties different for tension and compression , 1996 .

[23]  M. Bendsøe,et al.  Optimization methods for truss geometry and topology design , 1994 .

[24]  M. Beckers,et al.  Topology optimization using a dual method with discrete variables , 1999 .

[25]  Y. C. Lam,et al.  Performance characteristics of resizing algorithms for thickness optimization of plate structures , 2000 .

[26]  G.I.N. Rozvany,et al.  An improved approximation technique for the DCOC method of sizing optimization , 1994 .

[27]  J. Outrata,et al.  Effective reformulations of the truss topology design problem , 2006 .

[28]  A. Michell LVIII. The limits of economy of material in frame-structures , 1904 .

[29]  Martin P. Bendsøe,et al.  Optimization of Structural Topology, Shape, And Material , 1995 .

[30]  M. Zhou,et al.  The COC algorithm, part I: Cross-section optimization or sizing , 1991 .

[31]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .