Multilevel Accelerated Quadrature for PDEs with Log-Normally Distributed Diffusion Coefficient

This article is dedicated to multilevel quadrature methods for the rapid solution of stochastic partial differential equations with a log-normally distributed diffusion coefficient. The key idea of such approaches is a sparse-grid approximation of the occurring product space between the stochastic and the spatial variable. We develop the mathematical theory and present error estimates for the computation of the solution's moments with focus on the mean and the variance. In particular, the present framework covers the multilevel Monte Carlo method and the multilevel quasi-Monte Carlo method as special cases. The theoretical findings are supplemented by numerical experiments.

[1]  Fred J. Hickernell,et al.  On tractability of weighted integration over bounded and unbounded regions in Reals , 2004, Math. Comput..

[2]  Henryk Wozniakowski,et al.  When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..

[3]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.

[4]  M. Loève,et al.  Elementary Probability Theory , 1977 .

[5]  Art B. Owen,et al.  Halton Sequences Avoid the Origin , 2006, SIAM Rev..

[6]  Claude Jeffrey Gittelson,et al.  Convergence Rates of Multilevel and Sparse Tensor Approximations for a Random Elliptic PDE , 2013, SIAM J. Numer. Anal..

[7]  Michael Griebel,et al.  On the construction of sparse tensor product spaces , 2012, Math. Comput..

[8]  James A. Nichols,et al.  Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients , 2014, Numerische Mathematik.

[9]  G. Burton Sobolev Spaces , 2013 .

[10]  W. Schachermayer,et al.  Multilevel quasi-Monte Carlo path simulation , 2009 .

[11]  J. Halton On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .

[12]  K. A. Cliffe,et al.  Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients , 2011, Comput. Vis. Sci..

[13]  Colas Schretter,et al.  Monte Carlo and Quasi-Monte Carlo Methods , 2016 .

[14]  Andrea Barth,et al.  Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients , 2011, Numerische Mathematik.

[15]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[16]  E. Novak,et al.  Tractability of Multivariate Problems , 2008 .

[17]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[18]  R. Tempone,et al.  ON THE OPTIMAL POLYNOMIAL APPROXIMATION OF STOCHASTIC PDES BY GALERKIN AND COLLOCATION METHODS , 2012 .

[19]  P. Frauenfelder,et al.  Finite elements for elliptic problems with stochastic coefficients , 2005 .

[20]  Christoph Schwab,et al.  Sparse Tensor Discretization of Elliptic sPDEs , 2009, SIAM J. Sci. Comput..

[21]  Fabio Nobile,et al.  An Anisotropic Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[22]  Stefan Heinrich The Multilevel Method of Dependent Tests , 2000 .

[23]  C. J. Gittelson STOCHASTIC GALERKIN DISCRETIZATION OF THE LOG-NORMAL ISOTROPIC DIFFUSION PROBLEM , 2010 .

[24]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[25]  Julian V. Noble,et al.  The full Monte , 2002, Comput. Sci. Eng..

[26]  Christoph Schwab,et al.  N-term Wiener chaos approximation rates for elliptic PDEs with lognormal Gaussian random inputs , 2014 .

[27]  Frances Y. Kuo,et al.  Multi-level Quasi-Monte Carlo Finite Element Methods for a Class of Elliptic PDEs with Random Coefficients , 2015, Foundations of Computational Mathematics.

[28]  Robert Scheichl,et al.  Finite Element Error Analysis of Elliptic PDEs with Random Coefficients and Its Application to Multilevel Monte Carlo Methods , 2013, SIAM J. Numer. Anal..

[29]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[30]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[31]  Claude Jeffrey Gittelson,et al.  Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs* , 2011, Acta Numerica.

[32]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[33]  Marcel Bieri,et al.  A Sparse Composite Collocation Finite Element Method for Elliptic SPDEs , 2011, SIAM J. Numer. Anal..

[34]  Helmut Harbrecht,et al.  On Multilevel Quadrature for Elliptic Stochastic Partial Differential Equations , 2012 .

[35]  Julia Charrier,et al.  Strong and Weak Error Estimates for Elliptic Partial Differential Equations with Random Coefficients , 2012, SIAM J. Numer. Anal..

[36]  C. Simader,et al.  On Dirichlet's Boundary Value Problem , 1972 .

[37]  H. Harbrecht,et al.  On the low-rank approximation by the pivoted Cholesky decomposition , 2012 .

[38]  Elisabeth Ullmann,et al.  Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients , 2012, Numerische Mathematik.

[39]  J. V. Uspensky,et al.  On the convergence of quadrature formulas related to an infinite interval , 1928 .