Low-energy selective capture of carbon dioxide by a pre-designed elastic single-molecule trap.

Single-molecule trap: Easy activation of the water-stable metal-organic framework PCN-200 provides a new route to low-energy selective CO(2) capture through stimuli-responsive adsorption behavior. This elastic CO(2) trapping effect was confirmed by single-component and binary gas-adsorption isotherms and crystallographic determination.

[1]  Randall Q Snurr,et al.  Development and evaluation of porous materials for carbon dioxide separation and capture. , 2011, Angewandte Chemie.

[2]  Tapas Kumar Maji,et al.  Guest-induced asymmetry in a metal-organic porous solid with reversible single-crystal-to-single-crystal structural transformation. , 2005, Journal of the American Chemical Society.

[3]  M. O'keeffe,et al.  Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs , 2008, Nature.

[4]  A. Matzger,et al.  Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. , 2008, Journal of the American Chemical Society.

[5]  C. Serre,et al.  High uptakes of CO2 and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[6]  Perla B. Balbuena,et al.  Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks , 2011 .

[7]  E. Gao,et al.  Coordination chemistry of tetrazolate-5-carboxylate with manganese(II): synthesis, structure and magnetism. , 2009, Dalton transactions.

[8]  Hong‐Cai Zhou,et al.  A mesh-adjustable molecular sieve for general use in gas separation. , 2007, Angewandte Chemie.

[9]  Youn Sang Bae,et al.  Poröse Materialien zur CO2‐Abtrennung und ‐Abscheidung – Entwicklung und Bewertung , 2011 .

[10]  B. Smit,et al.  Carbon dioxide capture: prospects for new materials. , 2010, Angewandte Chemie.

[11]  Kenji Sumida,et al.  Evaluating metal–organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption , 2011 .

[12]  Gary T. Rochelle,et al.  Amine Scrubbing for CO2 Capture , 2009, Science.

[13]  R. Stuart Haszeldine,et al.  Carbon Capture and Storage: How Green Can Black Be? , 2009, Science.

[14]  C. Serre,et al.  Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. , 2009, Chemical Society reviews.

[15]  Peter G. Boyd,et al.  Direct Observation and Quantification of CO2 Binding Within an Amine-Functionalized Nanoporous Solid , 2010, Science.

[16]  D. D’Alessandro,et al.  Enhanced carbon dioxide capture upon incorporation of N,N′-dimethylethylenediamine in the metal–organic framework CuBTTri , 2011 .

[17]  D. M. D'Alessandro,et al.  Abscheidung von Kohlendioxid: Perspektiven für neue Materialien , 2010 .

[18]  J. Long,et al.  Introduction to metal-organic frameworks. , 2012, Chemical reviews.

[19]  M. LeVan,et al.  Stability effects on CO2 adsorption for the DOBDC series of metal-organic frameworks. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[20]  A. Matzger,et al.  Effect of humidity on the performance of microporous coordination polymers as adsorbents for CO2 capture. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[21]  Yan-Qin Wang,et al.  Isomorphous CoII and MnII materials of tetrazolate-5-carboxylate with an unprecedented self-penetrating net and distinct magnetic behaviours. , 2008, Chemical communications.

[22]  Mario Wriedt,et al.  Rational design of bridging selenocyanates by thermal decomposition reactions. , 2010, Chemical communications.

[23]  Dan Zhao,et al.  Tuning the topology and functionality of metal-organic frameworks by ligand design. , 2011, Accounts of chemical research.

[24]  Nilay Shah,et al.  An overview of CO2 capture technologies , 2010 .

[25]  Hong‐Cai Zhou,et al.  Preparation and gas adsorption studies of three mesh-adjustable molecular sieves with a common structure. , 2009, Journal of the American Chemical Society.

[26]  Steven Chu,et al.  Carbon Capture and Sequestration , 2016 .

[27]  Seda Keskin,et al.  Can metal-organic framework materials play a useful role in large-scale carbon dioxide separations? , 2010, ChemSusChem.

[28]  C. Janiak,et al.  MOFs, MILs and more: concepts, properties and applications for porous coordination networks (PCNs) , 2010 .

[29]  S. Kitagawa,et al.  Soft porous crystals. , 2009, Nature chemistry.

[30]  Bo Wang,et al.  Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites , 2009, Proceedings of the National Academy of Sciences.

[31]  Ralph H. Weiland,et al.  Heat Capacity of Aqueous Monoethanolamine, Diethanolamine, N-Methyldiethanolamine, and N-Methyldiethanolamine-Based Blends with Carbon Dioxide , 1997 .