Investigating the multiwavelength behaviour of the flat spectrum radio quasar CTA 102 during 2013–2017

We present a multiwavelength study of the flat-spectrum radio quasar CTA 102 during 2013–2017. We use radio-to-optical data obtained by the Whole Earth Blazar Telescope, 15 GHz data from the Owens Valley Radio Observatory, 91 and 103 GHz data from the Atacama Large Millimeter Array, near-infrared data from the Rapid Eye Monitor telescope, as well as data from the Swift (optical-UV and X-rays) and Fermi (γ-rays) satellites to study flux and spectral variability and the correlation between flux changes at different wavelengths. Unprecedented γ-ray flaring activity was observed during 2016 November–2017 February, with four major outbursts. A peak flux of (2158 ± 63) × 10−8 ph cm−2 s−1, corresponding to a luminosity of (2.2 ± 0.1) × 1050 erg s−1, was reached on 2016 December 28. These four γ-ray outbursts have corresponding events in the near-infrared, optical, and UV bands, with the peaks observed at the same time. A general agreement between X-ray and γ-ray activity is found. The γ-ray flux variations show a general, strong correlation with the optical ones with no time lag between the two bands and a comparable variability amplitude. This γ-ray/optical relationship is in agreement with the geometrical model that has successfully explained the low-energy flux and spectral behaviour, suggesting that the long-term flux variations are mainly due to changes in the Doppler factor produced by variations of the viewing angle of the emitting regions. The difference in behaviour between radio and higher energy emission would be ascribed to different viewing angles of the jet regions producing their emission.

[1]  S. Ciprini,et al.  Radio VLBA polarization and multiband monitoring of the high-redshift quasar S5 0836 + 710 during a high-activity period , 2019, Monthly Notices of the Royal Astronomical Society.

[2]  K. Mooley,et al.  A rapidly changing jet orientation in the stellar-mass black-hole system V404 Cygni , 2019, Nature.

[3]  J. Scargle,et al.  Characterizing the Gamma-Ray Variability of the Brightest Flat Spectrum Radio Quasars Observed with the Fermi LAT , 2019, The Astrophysical Journal.

[4]  J. Hodgson,et al.  The magnetic field structure in CTA 102 from high-resolution mm-VLBI observations during the flaring state in 2016–2017 , 2018, Astronomy & Astrophysics.

[5]  J. Lenain,et al.  The Extended Flare in CTA 102 in 2016 and 2017 within a Hadronic Model through Cloud Ablation by the Relativistic Jet , 2018, The Astrophysical Journal.

[6]  Adam A. Miller,et al.  The First Tidal Disruption Flare in ZTF: From Photometric Selection to Multi-wavelength Characterization , 2018, The Astrophysical Journal.

[7]  I. Pashchenko,et al.  OJ287: deciphering the ‘Rosetta stone of blazars’ , 2018 .

[8]  N. Sahakyan,et al.  On the Multiwavelength Emission from CTA 102 , 2018, The Astrophysical Journal.

[9]  A. R. Rao,et al.  Short-timescale γ-Ray Variability in CTA 102 , 2018 .

[10]  K. Schawinski,et al.  The 105-Month Swift-BAT All-sky Hard X-Ray Survey , 2018, 1801.01882.

[11]  D. N. Okhmat,et al.  Blazar spectral variability as explained by a twisted inhomogeneous jet , 2017, Nature.

[12]  Paul S. Smith,et al.  Behaviour of the Blazar CTA 102 during Two Giant Outbursts , 2017 .

[13]  S. Wagner,et al.  Cloud Ablation by a Relativistic Jet and the Extended Flare in CTA 102 in 2016 and 2017 , 2017, 1711.06117.

[14]  Berkeley,et al.  Formation of precessing jets by tilted black hole discs in 3D general relativistic MHD simulations , 2017, 1707.06619.

[15]  A. Eckart,et al.  A new view on the M 87 jet origin: Turbulent loading leading to large-scale episodic wiggling , 2017 .

[16]  Rene Doyon,et al.  The International Deep Planet Survey: II. The frequency of directly imaged giant exoplanets with stellar mass , 2016, 1607.08239.

[17]  L. Sironi,et al.  Blazar flares powered by plasmoids in relativistic reconnection , 2016, 1606.07447.

[18]  W. P. Chen,et al.  Exceptional outburst of the blazar CTA 102 in 2012: the GASP–WEBT campaign and its extension , 2016, 1606.07836.

[19]  D. Thompson,et al.  DEVELOPMENT OF THE MODEL OF GALACTIC INTERSTELLAR EMISSION FOR STANDARD POINT-SOURCE ANALYSIS OF FERMI LARGE AREA TELESCOPE DATA , 2016, 1602.07246.

[20]  Paul S. Smith,et al.  A MULTI-WAVELENGTH POLARIMETRIC STUDY OF THE BLAZAR CTA 102 DURING A GAMMA-RAY FLARE IN 2012 , 2015, 1508.07254.

[21]  J. Acosta-Pulido,et al.  Multiwavelength behaviour of the blazar OJ 248 from radio to {γ}-rays , 2015, 1505.00916.

[22]  J. Chiang,et al.  RAPID VARIABILITY OF BLAZAR 3C 279 DURING FLARING STATES IN 2013−2014 WITH JOINT FERMI-LAT, NuSTAR, SWIFT, AND GROUND-BASED MULTI-WAVELENGTH OBSERVATIONS , 2015, 1502.04699.

[23]  M. Boettcher,et al.  Hadronic models of blazars require a change of the accretion paradigm , 2015, 1501.06124.

[24]  Tucson,et al.  Unprecedented study of the broadband emission of Mrk 421 during flaring activity in March 2010 , 2014, 1412.3576.

[25]  Tenerife,et al.  Infrared properties of blazars: putting the GASP-WEBT sources into context , 2014, 1405.4168.

[26]  J. Chiang,et al.  Detection of significant cm to sub-mm band radio and γ-ray correlated variability in Fermi bright blazars , 2014, 1403.4170.

[27]  A. Marscher TURBULENT, EXTREME MULTI-ZONE MODEL FOR SIMULATING FLUX AND POLARIZATION VARIABILITY IN BLAZARS , 2013, 1311.7665.

[28]  D. N. Okhmat,et al.  The awakening of BL Lacertae: observations by Fermi, Swift and the GASP-WEBT , 2013, 1309.1282.

[29]  E. Ros,et al.  Catching the radio flare in CTA 102 - III. Core-shift and spectral analysis , 2013, 1306.6208.

[30]  Nasa The Structure and Emission Model of the Relativistic Jet in the Quasar 3C 279 Inferred From Radio To High-Energy Gamma-Ray Observations in 2008-2010 , 2013 .

[31]  A. Prakash,et al.  LEPTONIC AND HADRONIC MODELING OF FERMI-DETECTED BLAZARS , 2013, 1304.0605.

[32]  A. Drlica-Wagner,et al.  Pass 8: Toward the Full Realization of the Fermi-LAT Scientific Potential , 2013, 1303.3514.

[33]  F. Schinzel,et al.  Long-term monitoring of PKS 0537−441 with Fermi–LAT and multiwavelength observations , 2013, 1302.5439.

[34]  S. Shabala,et al.  AGN JET KINETIC POWER AND THE ENERGY BUDGET OF RADIO GALAXY LOBES , 2013, 1301.3499.

[35]  J. Isler,et al.  AN OPTICAL–NEAR-INFRARED OUTBURST WITH NO ACCOMPANYING γ-RAYS IN THE BLAZAR PKS 0208−512 , 2012, 1212.2629.

[36]  P. Hardee,et al.  S5 0836+710: An FRII jet disrupted by the growth of a helical instability? , 2012, 1207.6123.

[37]  W. P. Chen,et al.  Variability of the blazar 4C 38.41 (B3 1633+382) from GHz frequencies to GeV energies , 2012, 1207.3979.

[38]  W. P. Chen,et al.  THE STRUCTURE AND EMISSION MODEL OF THE RELATIVISTIC JET IN THE QUASAR 3C 279 INFERRED FROM RADIO TO HIGH-ENERGY γ-RAY OBSERVATIONS IN 2008–2010 , 2012, 1206.0745.

[39]  R. Dodson,et al.  ERRATIC JET WOBBLING IN THE BL LACERTAE OBJECT OJ287 REVEALED BY SIXTEEN YEARS OF 7 mm VLBA OBSERVATIONS , 2011, 1112.4747.

[40]  T. Piran,et al.  Variability in Blazars: Clues from PKS 2155-304 , 2011, 1107.5812.

[41]  M. Gurwell,et al.  The long-lasting activity of 3C 454.3 - GASP-WEBT and satellite observations in 2008–2010 , 2011, 1107.1093.

[42]  C. Dermer,et al.  Fermi Gamma-ray Space Telescope Observations of the Gamma-ray Outburst from 3C454.3 in November 2010 , 2012 .

[43]  L. A. Antonelli,et al.  AGILE detection of extreme γ-ray activity from the blazar PKS 1510-089 during March 2009 - Multifrequency analysis , 2011, 1103.3647.

[44]  J. Chiang,et al.  FERMIGAMMA-RAY SPACE TELESCOPE OBSERVATIONS OF THE GAMMA-RAY OUTBURST FROM 3C454.3 IN NOVEMBER 2010 , 2011, 1102.0277.

[45]  O. Siegmund UV, X-ray, and gamma-ray space instrumentation for astronomy XVII : 21-24 August 2011, San Diego, California, United States , 2011 .

[46]  G. Ghisellini,et al.  The transition between BL Lac objects and flat spectrum radio quasars , 2010, 1012.0308.

[47]  K. Grainge,et al.  BLAZARS IN THE FERMI ERA: THE OVRO 40 m TELESCOPE MONITORING PROGRAM , 2010, 1011.3111.

[48]  W-P. Chen,et al.  Another look at the BL Lacertae flux and spectral variability: Observations by GASP-WEBT, XMM-Newton, and Swift in 2008―2009 , 2010, 1009.2604.

[49]  M. Lister,et al.  RADIO/GAMMA-RAY TIME DELAY IN THE PARSEC-SCALE CORES OF ACTIVE GALACTIC NUCLEI , 2010, 1006.1867.

[50]  M. J. Page,et al.  Further calibration of the Swift ultraviolet/optical telescope , 2010, 1004.2448.

[51]  H. R. Miller,et al.  SIMULTANEOUS MULTIWAVELENGTH AND OPTICAL MICROVARIABILITY OBSERVATIONS OF CTA 102 (PKS J2232+1143) , 2009, 0911.1481.

[52]  A. Ferrari,et al.  High-resolution 3D relativistic MHD simulations of jets , 2009, 0908.4523.

[53]  J. Chiang,et al.  THE LARGE AREA TELESCOPE ON THE FERMI GAMMA-RAY SPACE TELESCOPE MISSION , 2009, 0902.1089.

[54]  M. Bremer,et al.  Superluminal non-ballistic jet swing in the quasar NRAO 150 revealed by mm-VLBI , 2007, 0710.5435.

[55]  Oswald H. W. Siegmund,et al.  UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XVIII , 2007 .

[56]  M. J. Page,et al.  Photometric calibration of the Swift ultraviolet/optical telescope , 2007, 0708.2259.

[57]  A. Merloni,et al.  Measuring the kinetic power of active galactic nuclei in the radio mode , 2007, 0707.3356.

[58]  W. B. Burton,et al.  The Leiden/Argentine/Bonn (LAB) Survey of Galactic HI - Final data release of the combined LDS and IAR surveys with improved stray-radiation corrections , 2005, astro-ph/0504140.

[59]  Paolo Conconi,et al.  REM: a fully robotic telescope for GRB observations , 2004, SPIE Astronomical Telescopes + Instrumentation.

[60]  Alan A. Wells,et al.  The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.

[61]  Scott D. Barthelmy,et al.  The Burst Alert Telescope (BAT) on the SWIFT Midex Mission , 2004, SPIE Optics + Photonics.

[62]  Multiwavelength Observations of Strong Flares From the TeV-Blazar 1ES 1959+650 , 2003, astro-ph/0310158.

[63]  Peter W. A. Roming,et al.  The Swift Ultra-Violet/Optical Telescope , 2002, SPIE Optics + Photonics.

[64]  D. Watson,et al.  The Swift X-Ray Telescope , 1999, SPIE Optics + Photonics.

[65]  D. Mouillet,et al.  (DOI: will be inserted by hand later) , 2002 .

[66]  University College Dublin,et al.  Multiwavelength Observations of Markarian 421 in 2001 March: An Unprecedented View on the X-Ray/TeV Correlated Variability , 2007, 0710.4138.

[67]  E.,et al.  The REM telescope: detecting the near infra-red counterparts of Gamma-Ray Bursts and the prompt behavior of their optical continuum , 2001, astro-ph/0203034.

[68]  Y. Uchida,et al.  Production of wiggled structure of AGN radio jets in the sweeping magnetic twist mechanism , 2001 .

[69]  R. Davies,et al.  Observations of the bright radio sources in the North Celestial Pole region at the RATAN-600 radio telescope , 2001, astro-ph/0102275.

[70]  R. McCray,et al.  Astrophysical Journal, in press Preprint typeset using L ATEX style emulateapj v. 26/01/00 ON THE ABSORPTION OF X-RAYS IN THE INTERSTELLAR MEDIUM , 2000 .

[71]  A. Lähteenmäki,et al.  Tuorla quasar monitoring , 2000 .

[72]  D. L. Bertsch,et al.  The Third EGRET Catalog of High-Energy Gamma-Ray Sources , 1998 .

[73]  Bradley M. Peterson,et al.  On Uncertainties in Cross‐Correlation Lags and the Reality of Wavelength‐dependent Continuum Lags in Active Galactic Nuclei , 1998, astro-ph/9802103.

[74]  E. I. Robson,et al.  Multiwavelength Observations of a Dramatic High-Energy Flare in the Blazar 3C 279 , 1997, astro-ph/9711243.

[75]  G. Massone,et al.  Optical photometric monitoring of γ-ray loud blazars. - I. Observations from November 1994 to November 1995 , 1997 .

[76]  D. L. Bertsch,et al.  The Likelihood Analysis of EGRET Data , 1996 .

[77]  F. Deubner,et al.  Ground — based instrumentation , 1994 .

[78]  J. Bregman,et al.  Optical and radio variability in blazars , 1992 .

[79]  P. Padovani,et al.  The complete sample of 1 Jansky BL Lacertae objects. I - Summary properties , 1991 .

[80]  S. Myers,et al.  A limit of the anisotropy of the microwave background radiation on arc minute scales , 1989 .

[81]  R. J. Leacock,et al.  Long-term optical behavior of 144 compact extragalactic objects - 1969-1988 , 1988 .

[82]  R Edelson,et al.  The Discrete Correlation Function: a New Method for Analyzing Unevenly Sampled Variability Data , 1988 .

[83]  A. Wolfe Pittsburgh Conference on BL Lac Objects, University of Pittsburgh, Pittsburgh, Pa., April 24-26, 1978, Proceedings , 1978 .

[84]  Maarten Schmidt,et al.  LARGE REDSHIFTS OF FIVE QUASI-STELLAR SOURCES , 1965 .