Nanocrystalline Boron-Doped Diamond as a Corrosion-Resistant Anode for Water Oxidation via Si Photoelectrodes.

Due to its high sensitivity to corrosion, the use of Si in direct photoelectrochemical (PEC) water-splitting systems that convert solar energy into chemical fuels has been greatly limited. Therefore, the development of low-cost materials resistant to corrosion under oxidizing conditions is an important goal toward a suitable protection of otherwise unstable semiconductors used in PEC cells. Here, we report on the development of a protective coating based on thin and electrically conductive nanocrystalline boron-doped diamond (BDD) layers. We found that  BDD layers protect the underlying Si photoelectrodes over a wide pH range (1-14) in aqueous electrolyte solutions. A BDD layer maintains an efficient charge carrier transfer from the underlying silicon to the electrolyte solution. Si|BDD photoelectrodes show no sign of performance degradation after a continuous PEC treatment in neutral, acidic, and basic electrolytes. The deposition of a cobalt phosphate (CoPi) oxygen evolution catalyst onto the BDD layer significantly reduces the overpotential for water oxidation, demonstrating the ability of  BDD layers to substitute the transparent conductive oxide coatings, such as indium tin oxide (ITO) and fluorine-doped tin oxide (FTO), frequently used as protective layers in Si photoelectrodes.

[1]  A. Zukal,et al.  Electrochemical characterization of porous boron-doped diamond prepared using SiO2 fiber template , 2018, Diamond and Related Materials.

[2]  Z. Remeš,et al.  Precursor gas composition optimisation for large area boron doped nano-crystalline diamond growth by MW-LA-PECVD , 2018 .

[3]  Jinzhan Su,et al.  Stability and Performance of Sulfide-, Nitride-, and Phosphide-Based Electrodes for Photocatalytic Solar Water Splitting. , 2017, The journal of physical chemistry letters.

[4]  L. Kavan,et al.  Optically transparent composite diamond/Ti electrodes , 2017 .

[5]  K. Schwarzová-Pecková,et al.  Influence of boron content on the morphological, spectral, and electroanalytical characteristics of anodically oxidized boron-doped diamond electrodes , 2017 .

[6]  K. Mayrhofer,et al.  Stability limits of tin-based electrocatalyst supports , 2017, Scientific Reports.

[7]  Kimberly M. Papadantonakis,et al.  A comparison of the chemical, optical and electrocatalytic properties of water-oxidation catalysts for use in integrated solar-fuel generators , 2017 .

[8]  L. Kavan,et al.  Fabrication of porous boron-doped diamond on SiO2 fiber templates , 2017 .

[9]  K. Domen,et al.  Photoelectrochemical hydrogen evolution from water on a surface modified CdTe thin film electrode under simulated sunlight , 2017 .

[10]  L. Fekete,et al.  Structural, optical and mechanical properties of thin diamond and silicon carbide layers grown by low pressure microwave linear antenna plasma enhanced chemical vapour deposition , 2016 .

[11]  G. Swain,et al.  Structure, Electronic Properties, and Electrochemical Behavior of a Boron-Doped Diamond/Quartz Optically Transparent Electrode. , 2016, ACS applied materials & interfaces.

[12]  Y. Li,et al.  Improving charge collection with delafossite photocathodes: a host–guest CuAlO2/CuFeO2 approach , 2016 .

[13]  Nathan S Lewis,et al.  Research opportunities to advance solar energy utilization , 2016, Science.

[14]  R. Bogdanowicz,et al.  Optically transparent boron-doped nanocrystalline diamond films for spectroelectrochemical measurements on different substrates , 2016 .

[15]  Roger H. French,et al.  Degradation of transparent conductive oxides: Interfacial engineering and mechanistic insights , 2015 .

[16]  L. Fekete,et al.  Effect of plasma composition on nanocrystalline diamond layers deposited by a microwave linear antenna plasma‐enhanced chemical vapour deposition system , 2015 .

[17]  Nathan S. Lewis,et al.  Thin-Film Materials for the Protection of Semiconducting Photoelectrodes in Solar-Fuel Generators , 2015 .

[18]  Sergi Garcia-Segura,et al.  Role of sp3/sp2 ratio on the electrocatalytic properties of boron-doped diamond electrodes: A mini review , 2015 .

[19]  Tuo Wang,et al.  Single-Crystal Semiconductors with Narrow Band Gaps for Solar Water Splitting. , 2015, Angewandte Chemie.

[20]  Hui Huang,et al.  Carbon nanodots modified cobalt phosphate as efficient electrocatalyst for water oxidation , 2015 .

[21]  L. Kavan,et al.  Electrochemical impedance spectroscopy of polycrystalline boron doped diamond layers with hydrogen and oxygen terminated surface , 2015 .

[22]  K. Sun,et al.  High-Performance a-Si/c-Si Heterojunction Photoelectrodes for Photoelectrochemical Oxygen and Hydrogen Evolution. , 2015, Nano letters.

[23]  L. Peter Photoelectrochemical Water Splitting. A Status Assessment , 2015 .

[24]  P. Płotka,et al.  Optical and electrical properties of ultrathin transparent nanocrystalline boron-doped diamond electrodes , 2015 .

[25]  Kimberly M. Papadantonakis,et al.  Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films , 2015, Proceedings of the National Academy of Sciences.

[26]  J. Macpherson,et al.  A practical guide to using boron doped diamond in electrochemical research. , 2015, Physical chemistry chemical physics : PCCP.

[27]  L. Fekete,et al.  Nanocrystalline diamond on Si solar cells for direct photoelectrochemical water splitting , 2014 .

[28]  L. Fekete,et al.  Large area deposition of boron doped nano-crystalline diamond films at low temperatures using microwave plasma enhanced chemical vapour deposition with linear antenna delivery , 2014 .

[29]  K. Sun,et al.  Enabling silicon for solar-fuel production. , 2014, Chemical reviews.

[30]  Marika Edoff,et al.  Sustainable solar hydrogen production: from photoelectrochemical cells to PV-electrolyzers and back again , 2014 .

[31]  Matthew R. Shaner,et al.  Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation , 2014, Science.

[32]  Sungho Jin,et al.  Si photoanode protected by a metal modified ITO layer with ultrathin NiO(x) for solar water oxidation. , 2014, Physical chemistry chemical physics : PCCP.

[33]  Ib Chorkendorff,et al.  Silicon protected with atomic layer deposited TiO2: durability studies of photocathodic H2 evolution , 2013 .

[34]  H. Dai,et al.  High-Performance Silicon Photoanodes Passivated with Ultrathin Nickel Films for Water Oxidation , 2013, Science.

[35]  Christophe Ballif,et al.  Amorphous Si thin film based photocathodes with high photovoltage for efficient hydrogen production. , 2013, Nano letters.

[36]  H. Dinh,et al.  Photoelectrochemical Water Splitting: Standards, Experimental Methods, and Protocols , 2013 .

[37]  Minglong Zhang,et al.  Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook , 2013 .

[38]  T. Buonassisi,et al.  Interfaces between water splitting catalysts and buried silicon junctions , 2013 .

[39]  K. Sivula,et al.  Photoelectrochemical Tandem Cells for Solar Water Splitting , 2013 .

[40]  Elizabeth A. Santori,et al.  Photoanodic behavior of vapor-liquid-solid–grown, lightly doped, crystalline Si microwire arrays , 2012 .

[41]  Daniel G Nocera,et al.  The artificial leaf. , 2012, Accounts of chemical research.

[42]  D. Zhao,et al.  Controlled Sn-doping in TiO2 nanowire photoanodes with enhanced photoelectrochemical conversion. , 2012, Nano letters.

[43]  Peidong Yang,et al.  Surfactant-free, large-scale, solution-liquid-solid growth of gallium phosphide nanowires and their use for visible-light-driven hydrogen production from water reduction. , 2011, Journal of the American Chemical Society.

[44]  D. Nocera,et al.  Wireless Solar Water Splitting Using Silicon-Based Semiconductors and Earth-Abundant Catalysts , 2011, Science.

[45]  Yohan Park,et al.  Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation. , 2011, Nature materials.

[46]  T. Buonassisi,et al.  Light-induced water oxidation at silicon electrodes functionalized with a cobalt oxygen-evolving catalyst , 2011, Proceedings of the National Academy of Sciences.

[47]  H. Kawarada,et al.  Photoemission study of electronic structure evolution across the metal-insulator transition of heavily B-doped diamond , 2011 .

[48]  Jae Sung Lee,et al.  Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation , 2011 .

[49]  Michael Grätzel,et al.  Solar water splitting: progress using hematite (α-Fe(2) O(3) ) photoelectrodes. , 2011, ChemSusChem.

[50]  Yichuan Ling,et al.  Sn-doped hematite nanostructures for photoelectrochemical water splitting. , 2011, Nano letters.

[51]  Timothy R. Cook,et al.  Solar energy supply and storage for the legacy and nonlegacy worlds. , 2010, Chemical reviews.

[52]  James R. McKone,et al.  Solar water splitting cells. , 2010, Chemical reviews.

[53]  Y. Einaga,et al.  Giant electric double-layer capacitance of heavily boron-doped diamond electrode , 2010 .

[54]  F. Omnès,et al.  Hydrogen passivation of boron acceptors in as-grown boron-doped CVD diamond epilayers , 2010 .

[55]  Nathan S. Lewis,et al.  Energy-Conversion Properties of Vapor-Liquid-Solid–Grown Silicon Wire-Array Photocathodes , 2010, Science.

[56]  Todd G. Deutsch,et al.  Amorphous silicon carbide photoelectrode for hydrogen production directly from water using sunlight , 2009 .

[57]  J. Luong,et al.  Boron-doped diamond electrode: synthesis, characterization, functionalization and analytical applications. , 2009, The Analyst.

[58]  D. Nocera Chemistry of personalized solar energy. , 2009, Inorganic chemistry.

[59]  T. D. Madgwick,et al.  Chemical vapour deposition synthetic diamond: materials, technology and applications , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[60]  J. S. Lee,et al.  Size effects of WO3 nanocrystals for photooxidation of water in particulate suspension and photoelectrochemical film systems , 2009 .

[61]  Daniel G. Nocera,et al.  In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co 2 + , 2008 .

[62]  N. Lewis,et al.  Photoelectrochemical studies of semiconducting photoanodes for hydrogen production via water dissociation , 2008 .

[63]  Daniel G. Nocera,et al.  In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+ , 2008, Science.

[64]  J. Yiming,et al.  Electrochemical corrosion behaviors of ITO films at anodic and cathodic polarization in sodium hydroxide solution , 2008, 2008 International Conference on Electronic Packaging Technology & High Density Packaging.

[65]  R. McCreery,et al.  Advanced carbon electrode materials for molecular electrochemistry. , 2008, Chemical reviews.

[66]  Stefan Nowy,et al.  The diamond/aqueous electrolyte interface: an impedance investigation. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[67]  A. Kraft Doped Diamond: A Compact Review on a New, Versatile Electrode Material , 2007, International Journal of Electrochemical Science.

[68]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[69]  C. Comninellis,et al.  Deposition of clusters and nanoparticles onto boron-doped diamond electrodes for electrocatalysis , 2006 .

[70]  P. Unwin,et al.  Impact of grain-dependent boron uptake on the electrochemical and electrical properties of polycrystalline boron doped diamond electrodes. , 2006, The journal of physical chemistry. B.

[71]  T. Matsushita,et al.  Origin of the metallic properties of heavily boron-doped superconducting diamond , 2005, Nature.

[72]  Giacomo Cerisola,et al.  Application of diamond electrodes to electrochemical processes , 2005 .

[73]  E. Matveeva Electrochemistry of the Indium-Tin Oxide Electrode in 1 M NaOH Electrolyte , 2005 .

[74]  G. Swain,et al.  Comparison of the Electrical, Optical, and Electrochemical Properties of Diamond and Indium Tin Oxide Thin-Film Electrodes , 2005 .

[75]  J. Boodts,et al.  Electrochemical characterisation and oxygen evolution at a heavily boron doped diamond electrode , 2005 .

[76]  J. Garrido,et al.  Electrochemical destruction of chlorophenoxy herbicides by anodic oxidation and electro-Fenton using a boron-doped diamond electrode , 2004 .

[77]  D. Riley,et al.  The influence of doping levels and surface termination on the electrochemistry of polycrystalline diamond , 2004 .

[78]  S. Machado,et al.  The water decomposition reactions on boron-doped diamond electrodes , 2004 .

[79]  F. Marken,et al.  Electroanalysis at diamond-like and doped-diamond electrodes , 2003 .

[80]  D. Riley,et al.  Electrochemical studies of moderately boron doped polycrystalline diamond in non-aqueous solvent , 2002 .

[81]  Zhijun Yan,et al.  Characteristics of Au/Ti/p‐diamond ohmic contacts prepared by r.f. sputtering , 2001 .

[82]  P. Morrison,et al.  Application of a Diamond Thin Film as a Transparent Electrode for In Situ Infrared Spectroelectrochemistry , 2001 .

[83]  R. Newman,et al.  Oxygen diffusion and precipitation in Czochralski silicon , 2000 .

[84]  Y. Zhu,et al.  The interface diffusion and chemical reaction between a Ti layer and a diamond substrate , 1999 .

[85]  J. Turner,et al.  Electrochemical stability of p-GaInP2 in aqueous electrolytes toward photoelectrochemical water splitting , 1998 .

[86]  A. Deneuville,et al.  Activation energy in low compensated homoepitaxial boron-doped diamond films 1 Paper presented at th , 1998 .

[87]  J. Angus,et al.  Applications of Diamond Thin Films in Electrochemistry , 1998 .

[88]  A. Argoitia,et al.  Hydrogen and Oxygen Evolution on Boron‐Doped Diamond Electrodes , 1996 .

[89]  Adam Heller,et al.  Efficient Solar to Chemical Conversion: 12% Efficient Photoassisted Electrolysis in the [ p -type InP(Ru)]/HCl-KCl/Pt(Rh) Cell , 1981 .

[90]  Usman Ali Rana,et al.  Boron-Doped Diamond (BDD) Coatings Protect Underlying Silicon in Aqueous Acidic Media–Application to the Hydrogen Evolution Reaction , 2014 .

[91]  K. Bothe,et al.  Minority carrier lifetime in silicon photovoltaics: The effect of oxygen precipitation , 2014 .

[92]  L. Peter,et al.  Photoelectrochemical water splitting : materials, processes and architectures , 2013 .

[93]  O. Williams,et al.  Nanocrystalline diamond , 2011 .

[94]  Yunny Meas Vong,et al.  Boron doped diamond electrode for the wastewater treatment , 2006 .

[95]  J. Garrido,et al.  Mineralization of paracetamol in aqueous medium by anodic oxidation with a boron-doped diamond electrode. , 2005, Chemosphere.

[96]  T. Tachibana,et al.  Incorporation of Pt Particles in Boron‐Doped Diamond Thin Films Applications in Electrocatalysis , 1999 .