Analytical modeling for vibration analysis of thin rectangular orthotropic/functionally graded plates with an internal crack
暂无分享,去创建一个
[1] Zijie Fan,et al. Transient vibration and sound radiation of a rectangular plate with viscoelastic boundary supports , 2001 .
[2] R. Szilard. Theories and Applications of Plate Analysis , 2004 .
[3] Marek Krawczuk,et al. Finite element model of plate with elasto-plastic through crack , 2001 .
[4] S. Vel,et al. Exact Solution for Thermoelastic Deformations of Functionally Graded Thick Rectangular Plates , 2002 .
[5] Stéphane Bordas,et al. Supersonic Flutter Analysis of Functionally Graded Material Plates with Cracks , 2013 .
[6] R. K. Singh,et al. FREE VIBRATION OF FUNCTIONALLY GRADED PLATES WITH A HIGHER-ORDER SHEAR AND NORMAL DEFORMATION THEORY , 2013 .
[7] Siu-Seong Law,et al. Anisotropic damage model for an inclined crack in thick plate and sensitivity study for its detection , 2004 .
[8] A. Leissa,et al. Vibrations of rectangular plates with internal cracks or slits , 2011 .
[9] Arthur W. Leissa,et al. Vibration of Plates , 2021, Solid Acoustic Waves and Vibration.
[10] P Kerfriden,et al. Natural frequencies of cracked functionally graded material plates by the extended finite element method , 2011 .
[11] F. Erdogan,et al. CRACK PROBLEMS IN FGM LAYERS UNDER THERMAL STRESSES , 1996 .
[12] E. Carrera,et al. Analysis of functionally graded material plates using triangular elements with cell-based smoothed discrete shear gap method , 2013, 1306.4811.
[13] M. Biancolini,et al. Approximate solution for free vibrations of thin orthotropic rectangular plates , 2005 .
[14] C. Rossit,et al. FUNDAMENTAL FREQUENCY OF TRANSVERSE VIBRATION OF A CLAMPED RECTANGULAR ORTHOTROPIC PLATE WITH A FREE-EDGE HOLE , 2000 .
[15] Renato Natal Jorge,et al. Natural frequencies of functionally graded plates by a meshless method , 2006 .
[16] Chi-Hung Huang,et al. VIBRATION ANALYSES OF CRACKED PLATES BY THE RITZ METHOD WITH MOVING LEAST-SQUARES INTERPOLATION FUNCTIONS , 2014 .
[17] Y. Shih,et al. Dynamic instability of rectangular plate with an edge crack , 2005 .
[18] N. K. Jain,et al. Analytical modeling and vibration analysis of internally cracked rectangular plates , 2014 .
[19] Stéphane Bordas,et al. Size-dependent free flexural vibration behavior of functionally graded nanoplates , 2012 .
[20] T. Rabczuk,et al. NURBS-based finite element analysis of functionally graded plates: Static bending, vibration, buckling and flutter , 2012, 1210.4676.
[21] Ahmad Akbari Rahimabadi,et al. Vibration of Functionally Graded Material Plates with Cutouts & Cracks in Thermal Environment , 2013, 1301.2003.
[22] K. A. Lazopoulos,et al. On the gradient strain elasticity theory of plates , 2004 .
[23] M. Cartmell,et al. An investigation into the vibration analysis of a plate with a surface crack of variable angular orientation , 2012 .
[24] Said Rechak,et al. Vibration analysis of cracked plates using the extended finite element method , 2009 .
[25] O. G. McGee,et al. Vibrations of cracked rectangular FGM thick plates , 2011 .
[26] H. Berger. A new approach to the analysis of large deflections of plates , 1954 .
[27] S. E. Khadem,et al. INTRODUCTION OF MODIFIED COMPARISON FUNCTIONS FOR VIBRATION ANALYSIS OF A RECTANGULAR CRACKED PLATE , 2000 .
[28] Stéphane Bordas,et al. Analysis of Thermoelastic Waves in a Two-Dimensional Functionally Graded Materials Domain by the Meshless Local Petrov-Galerkin (MLPG) Method , 2010 .
[29] P Kerfriden,et al. Linear free flexural vibration of cracked functionally graded plates in thermal environment , 2011 .
[30] P. Tong,et al. Couple stress based strain gradient theory for elasticity , 2002 .
[31] Nicholas Fantuzzi,et al. Generalized differential quadrature finite element method for cracked composite structures of arbitrary shape , 2013 .
[32] K. Bhaskar,et al. Accurate and elegant free vibration and buckling studies of orthotropic rectangular plates using untruncated infinite series , 2008 .
[33] K. Bhaskar,et al. Untruncated infinite series superposition method for accurate flexural analysis of isotropic/orthotropic rectangular plates with arbitrary edge conditions , 2008 .
[34] A. Mohanty,et al. Vibration analysis of a rectangular thin isotropic plate with a part-through surface crack of arbitrary orientation and position , 2013 .
[35] F. Erdogan,et al. Interaction of part-through cracks in a flat plate , 1985 .
[36] Yufeng Xing,et al. New exact solutions for free vibrations of thin orthotropic rectangular plates , 2009 .
[37] Wei-Ren Chen,et al. DYNAMIC STABILITY CHARACTERISTICS OF FUNCTIONALLY GRADED PLATES UNDER ARBITRARY PERIODIC LOADS , 2013 .
[38] Rama B. Bhat,et al. Natural frequencies of orthotropic rectangular plates obtained by iterative reduction of the partial differential equation , 1996 .
[39] Matthew P. Cartmell,et al. Analytical Modeling and Vibration Analysis of Partially Cracked Rectangular Plates With Different Boundary Conditions and Loading , 2009 .
[40] Fan Yang,et al. Experiments and theory in strain gradient elasticity , 2003 .
[41] Romesh C. Batra,et al. Natural frequencies of a functionally graded anisotropic rectangular plate , 2005 .
[42] L. Tong,et al. Effective properties for plain weave composites through-thickness reinforced with carbon nanotube forests , 2008 .
[43] Saeed Shojaee,et al. Free vibration analysis of thin plates by using a NURBS-based isogeometric approach , 2012 .
[44] D. E. Beskos,et al. Static, stability and dynamic analysis of gradient elastic flexural Kirchhoff plates , 2008 .
[45] Romesh C. Batra,et al. Natural frequencies of thick plates made of orthotropic, monoclinic, and hexagonal materials by a meshless method , 2009 .
[46] J. Reddy. Analysis of functionally graded plates , 2000 .
[47] M. Ganapathi,et al. Influence of Functionally Graded Material on Buckling of Skew Plates under Mechanical Loads , 2006 .
[48] J. Rice,et al. The Part-Through Surface Crack in an Elastic Plate , 1972 .
[49] F. Erdogan,et al. Surface crack problems in plates , 1989 .
[50] F. Erdogan,et al. The Surface Crack Problem for a Plate With Functionally Graded Properties , 1997 .
[51] Stéphane Bordas,et al. Isogeometric locking-free plate element: A simple first order shear deformation theory for functionally graded plates , 2014 .
[52] J. Murdock. Perturbations: Theory and Methods , 1987 .
[53] George C. Tsiatas,et al. A new Kirchhoff plate model based on a modified couple stress theory , 2009 .
[54] Chiung-shiann Huang,et al. Three-dimensional vibration analyses of functionally graded material rectangular plates with through internal cracks , 2012 .
[55] Qin Qian,et al. Vibration Analysis of Microscale Plates Based on Modified Couple Stress Theory , 2010 .
[56] S. Vel,et al. Three-dimensional exact solution for the vibration of functionally graded rectangular plates , 2004 .