A low-cost and green-solvent-processable hole-transport material enabled by a traditional bidentate ligand for highly efficient inverted perovskite solar cells

A bidentate ligand 1,10-phenanthroline enables a green-solvent-processable low-cost hole-transport material M1, which efficiently passivates the Pb2+ ion defects of perovskite toward high-performance inverted perovskite solar cells.

[1]  J. M. Gardner,et al.  A crosslinked polymer as dopant-free hole-transport material for efficient n-i-p type perovskite solar cells , 2021, Journal of Energy Chemistry.

[2]  Yiwang Chen,et al.  A non-wetting and conductive polyethylene dioxothiophene hole transport layer for scalable and flexible perovskite solar cells , 2021, Science China Chemistry.

[3]  Bolin Li,et al.  A Cost‐Effective D‐A‐D Type Hole‐Transport Material Enabling 20% Efficiency Inverted Perovskite Solar Cells † , 2021 .

[4]  J. Berry,et al.  High-performance methylammonium-free ideal-band-gap perovskite solar cells , 2021 .

[5]  Yaming Yu,et al.  Fused Dithienopicenocarbazole Enabling High Mobility Dopant-Free Hole-Transporting Polymers for Efficient and Stable Perovskite Solar Cells. , 2021, ACS applied materials & interfaces.

[6]  Zhihai Liu,et al.  Stability and efficiency improved perovskite solar cells through tuning the hydrophobicity of the hole transport layer with an organic semiconductor , 2021 .

[7]  Dongyang Zhang,et al.  Developing D–π–D hole-transport materials for perovskite solar cells: the effect of the π-bridge on device performance , 2021 .

[8]  A. Jen,et al.  Efficient Inverted Perovskite Solar Cells with Low Voltage Loss Achieved by a Pyridine-based Dopant-free Polymer Semiconductor. , 2020, Angewandte Chemie.

[9]  Tae Woong Kim,et al.  Stabilizing Perovskite Solar Cells to IEC61215:2016 Standards with over 9,000-h Operational Tracking , 2020 .

[10]  J. Berry,et al.  Assessing health and environmental impacts of solvents for producing perovskite solar cells , 2020, Nature Sustainability.

[11]  A. Jen,et al.  Regulating Surface Termination for Efficient Inverted Perovskite Solar Cells with Greater Than 23% Efficiency. , 2020, Journal of the American Chemical Society.

[12]  Liyuan Han,et al.  Efficiency progress of inverted perovskite solar cells , 2020 .

[13]  Chao Yao,et al.  A hole-transport material that also passivates perovskite surface defects for solar cells with improved efficiency and stability , 2020, Energy & Environmental Science.

[14]  Weihua Tang,et al.  Toward ideal hole transport materials: a review on recent progress in dopant-free hole transport materials for fabricating efficient and stable perovskite solar cells , 2020 .

[15]  Bumjoon J. Kim,et al.  Eco-Friendly Polymer Solar Cells: Advances in Green-Solvent Processing and Material Design. , 2020, ACS nano.

[16]  Qi Chen,et al.  Interfacial Dipole in Organic and Perovskite Solar Cells. , 2020, Journal of the American Chemical Society.

[17]  B. Liu,et al.  A Narrow‐Bandgap n‐Type Polymer with an Acceptor–Acceptor Backbone Enabling Efficient All‐Polymer Solar Cells , 2020, Advanced materials.

[18]  Guohua Wu,et al.  Anthradithiophene based hole-transport material for efficient and stable perovskite solar cells , 2020, Journal of Energy Chemistry.

[19]  A. Facchetti,et al.  Teaching old anchoring group new tricks: enabling low-cost, eco-friendly hole-transporting materials for efficient and stable perovskite solar cells. , 2020, Journal of the American Chemical Society.

[20]  Hai-bo Ma,et al.  Dopant‐Free and Green‐Solvent‐Processable Hole‐Transporting Materials for Highly Efficient Inverted Planar Perovskite Solar Cells , 2020, Solar RRL.

[21]  G. Han,et al.  Efficient and stable perovskite solar cell with suppressed defects by employing lead indicator-dithizone. , 2020, Angewandte Chemie.

[22]  Jingshan Luo,et al.  Toward Efficient and Stable Perovskite Solar Cells: Choosing Appropriate Passivator to Specific Defects , 2020, Solar RRL.

[23]  Yixin Zhao,et al.  Stabilizing the MAPbI3 perovksite via the in-situ formed lead sulfide layer for efficient and robust solar cells , 2020, Journal of Energy Chemistry.

[24]  H. Jung,et al.  High-Efficiency Perovskite Solar Cells. , 2020, Chemical reviews.

[25]  Huanping Zhou,et al.  Defect suppression and passivation for perovskite solar cells: from the birth to the lifetime operation , 2020, EnergyChem.

[26]  Q. Meng,et al.  In-Situ Electropolymerized Polyamines as Dopant-Free Hole-Transporting Materials for Efficient and Stable Inverted Perovskite Solar Cells , 2020 .

[27]  D. Onwudiwe,et al.  PbS Nanoparticles Prepared Using 1, 10-Phenanthroline Adduct of Lead(II) Bis(N-alkyl-N-phenyl dithiocarbamate) as Single Source Precursors , 2020, Molecules.

[28]  Weijie Song,et al.  Achieving over 21% efficiency in inverted perovskite solar cells by fluorinating a dopant-free hole transporting material , 2020 .

[29]  Fei Wu,et al.  Dopant‐Free Organic Hole‐Transporting Material for Efficient and Stable Inverted All‐Inorganic and Hybrid Perovskite Solar Cells , 2020, Advanced materials.

[30]  S. Manzhos,et al.  All‐Rounder Low‐Cost Dopant‐Free D‐A‐D Hole‐Transporting Materials for Efficient Indoor and Outdoor Performance of Perovskite Solar Cells , 2020, Advanced Electronic Materials.

[31]  C. Su,et al.  Thieno-imidazole based small molecule hole transport materials for dopant-free, efficient inverted (p–i–n) perovskite solar cells , 2020 .

[32]  Bolin Li,et al.  26 mA cm-2JSC achieved in the integrated solar cells. , 2019, Science bulletin.

[33]  Xingwang Zhang,et al.  Recent Progresses on Defect Passivation toward Efficient Perovskite Solar Cells , 2019, Advanced Energy Materials.

[34]  D. Dvorak,et al.  Dopant-free molecular hole transport material that mediates a 20% power conversion efficiency in a perovskite solar cell , 2019, Energy & Environmental Science.

[35]  Weihua Tang,et al.  Dithieno[3,2‐b:2′,3′‐d]pyrrol‐Cored Hole Transport Material Enabling Over 21% Efficiency Dopant‐Free Perovskite Solar Cells , 2019, Advanced Functional Materials.

[36]  A. Djurišić,et al.  Dopant‐Free Small‐Molecule Hole‐Transporting Material for Inverted Perovskite Solar Cells with Efficiency Exceeding 21% , 2019, Advanced materials.

[37]  Hai-bo Ma,et al.  A Bifunctional Saddle‐Shaped Small Molecule as a Dopant‐Free Hole Transporting Material and Interfacial Layer for Efficient and Stable Perovskite Solar Cells , 2019, Solar RRL.

[38]  Fang‐Chung Chen,et al.  Bidentate chelating ligands as effective passivating materials for perovskite light-emitting diodes. , 2019, Physical chemistry chemical physics : PCCP.

[39]  A. Ng,et al.  Alkali Chlorides for the Suppression of the Interfacial Recombination in Inverted Planar Perovskite Solar Cells , 2019, Advanced Energy Materials.

[40]  H. Tian,et al.  Semi-Locked Tetrathienylethene as a Building Block for Hole-Transporting Materials: Toward Efficient and Stable Perovskite Solar Cells. , 2019, Angewandte Chemie.

[41]  H. Jung,et al.  Effect of bidentate and tridentate additives on the photovoltaic performance and stability of perovskite solar cells , 2019, Journal of Materials Chemistry A.

[42]  Bo Jiao,et al.  Conjugated Molecules “Bridge”: Functional Ligand toward Highly Efficient and Long‐Term Stable Perovskite Solar Cell , 2019, Advanced Functional Materials.

[43]  Xiaowei Li,et al.  18.0% efficiency flexible perovskite solar cells based on double hole transport layers and CH3NH3PbI3−xClx with dual additives , 2018 .

[44]  M. Grätzel,et al.  Greener, Nonhalogenated Solvent Systems for Highly Efficient Perovskite Solar Cells , 2018 .

[45]  H. Tian,et al.  Low cost and stable quinoxaline-based hole-transporting materials with a D–A–D molecular configuration for efficient perovskite solar cells† †Electronic supplementary information (ESI) available. CCDC 1823702 and 1823703. For ESI and crystallographic data in CIF or other electronic format see DOI: 1 , 2018, Chemical science.

[46]  B. Dunn,et al.  Tuning Molecular Interactions for Highly Reproducible and Efficient Formamidinium Perovskite Solar Cells via Adduct Approach. , 2018, Journal of the American Chemical Society.

[47]  Gang Li,et al.  Stable and Efficient Organo‐Metal Halide Hybrid Perovskite Solar Cells via π‐Conjugated Lewis Base Polymer Induced Trap Passivation and Charge Extraction , 2018, Advanced materials.

[48]  Tao Wang,et al.  Conjugated Small Molecule for Efficient Hole Transport in High‐Performance p‐i‐n Type Perovskite Solar Cells , 2017 .

[49]  Kwanghee Lee,et al.  Achieving Large‐Area Planar Perovskite Solar Cells by Introducing an Interfacial Compatibilizer , 2017, Advanced materials.

[50]  Henk J. Bolink,et al.  Removing Leakage and Surface Recombination in Planar Perovskite Solar Cells , 2017 .

[51]  Zhen Xu,et al.  Visible Light Photoredox Catalyzed Biaryl Synthesis Using Nitrogen Heterocycles as Promoter , 2015 .

[52]  X. Jing,et al.  Pure and Saturated Red Electroluminescent Polyfluorenes with Dopant/Host System and PLED Efficiency/Color Purity Trade‐Offs , 2010 .

[53]  A. Listorti,et al.  1,10-phenanthrolines: versatile building blocks for luminescent molecules, materials and metal complexes. , 2009, Chemical Society reviews.