Finite element superconvergence on Shishkin mesh for 2-D convection-diffusion problems
暂无分享,去创建一个
[1] Jens Markus Melenk,et al. Analytic regularity for a singularly perturbed problem , 1999 .
[2] L. Wahlbin. Superconvergence in Galerkin Finite Element Methods , 1995 .
[3] Jens Markus Melenk,et al. The hp-version of the streamline diffusion finite element method in two space dimensions , 1999 .
[4] L. Wahlbin,et al. Local behavior in finite element methods , 1991 .
[5] Jens Markus Melenk,et al. hp FEM for Reaction-Diffusion Equations I: Robust Exponential Convergence , 1998 .
[6] Martin Stynes,et al. A Uniformly Convergent Galerkin Method on a Shishkin Mesh for a Convection-Diffusion Problem☆ , 1997 .
[7] Ian H. Sloan,et al. Superconvergence in finite element methods and meshes that are locally symmetric with respect to a point , 1996 .
[8] L. Wahlbin,et al. On the finite element method for singularly perturbed reaction-diffusion problems in two and one dimensions , 1983 .
[9] Christoph Schwab,et al. The p and hp versions of the finite element method for problems with boundary layers , 1996, Math. Comput..
[10] Hans-Görg Roos. Layer‐Adapted Grids for Singular Perturbation Problems , 1998 .
[11] A. H. Schatz,et al. Crosswind Smear and Pointwise Errors in Streamline Diffusion Finite Element Methods , 1987 .
[12] Guohui Zhou,et al. How accurate is the streamline diffusion finite element method? , 1997, Math. Comput..
[13] R. B. Kellogg,et al. Differentiability properties of solutions of the equation -ε 2 δ u + ru = f ( x,y ) in a square , 1990 .
[14] U MartinStynes. A Uniformly Convergent Galerkin Method on a Shishkin Mesh for a Convection-Diffusion Problem , 1997 .
[15] Torsten Linß,et al. Asymptotic Analysis and Shishkin-Type Decomposition for an Elliptic Convection–Diffusion Problem , 2001 .
[16] J. J. Miller,et al. Fitted Numerical Methods for Singular Perturbation Problems , 1996 .
[17] Rolf Stenberg,et al. Finite element methods: superconvergence, post-processing, and a posteriori estimates , 1998 .
[18] Mary F. Wheeler,et al. Uniform Convergence and Superconvergence of Mixed Finite Element Methods on Anisotropically Refined Grids , 2000, SIAM J. Numer. Anal..
[19] Lutz Tobiska,et al. Numerical Methods for Singularly Perturbed Differential Equations , 1996 .