Finite element superconvergence on Shishkin mesh for 2-D convection-diffusion problems

In this work, the bilinear finite element method on a Shishkin mesh for convection-diffusion problems is analyzed in the two-dimensional setting. A superconvergence rate O(N-2 ln2 N + eN-1.5lnN) in a discrete e-weighted energy norm is established under certain regularity assumptions. This convergence rate is uniformly valid with respect to the singular perturbation parameter e. Numerical tests indicate that the rate O(N-2ln2 N) is sharp for the boundary layer terms. As a by-product, an e-uniform convergence of the same order is obtained for the L2-norm. Furthermore, under the same regularity assumption, an e-uniform convergence of order N-3/2ln5/2N + eN-1ln1/2N in the L∞ norm is proved for some mesh points in the boundary layer region.

[1]  Jens Markus Melenk,et al.  Analytic regularity for a singularly perturbed problem , 1999 .

[2]  L. Wahlbin Superconvergence in Galerkin Finite Element Methods , 1995 .

[3]  Jens Markus Melenk,et al.  The hp-version of the streamline diffusion finite element method in two space dimensions , 1999 .

[4]  L. Wahlbin,et al.  Local behavior in finite element methods , 1991 .

[5]  Jens Markus Melenk,et al.  hp FEM for Reaction-Diffusion Equations I: Robust Exponential Convergence , 1998 .

[6]  Martin Stynes,et al.  A Uniformly Convergent Galerkin Method on a Shishkin Mesh for a Convection-Diffusion Problem☆ , 1997 .

[7]  Ian H. Sloan,et al.  Superconvergence in finite element methods and meshes that are locally symmetric with respect to a point , 1996 .

[8]  L. Wahlbin,et al.  On the finite element method for singularly perturbed reaction-diffusion problems in two and one dimensions , 1983 .

[9]  Christoph Schwab,et al.  The p and hp versions of the finite element method for problems with boundary layers , 1996, Math. Comput..

[10]  Hans-Görg Roos Layer‐Adapted Grids for Singular Perturbation Problems , 1998 .

[11]  A. H. Schatz,et al.  Crosswind Smear and Pointwise Errors in Streamline Diffusion Finite Element Methods , 1987 .

[12]  Guohui Zhou,et al.  How accurate is the streamline diffusion finite element method? , 1997, Math. Comput..

[13]  R. B. Kellogg,et al.  Differentiability properties of solutions of the equation -ε 2 δ u + ru = f ( x,y ) in a square , 1990 .

[14]  U MartinStynes A Uniformly Convergent Galerkin Method on a Shishkin Mesh for a Convection-Diffusion Problem , 1997 .

[15]  Torsten Linß,et al.  Asymptotic Analysis and Shishkin-Type Decomposition for an Elliptic Convection–Diffusion Problem , 2001 .

[16]  J. J. Miller,et al.  Fitted Numerical Methods for Singular Perturbation Problems , 1996 .

[17]  Rolf Stenberg,et al.  Finite element methods: superconvergence, post-processing, and a posteriori estimates , 1998 .

[18]  Mary F. Wheeler,et al.  Uniform Convergence and Superconvergence of Mixed Finite Element Methods on Anisotropically Refined Grids , 2000, SIAM J. Numer. Anal..

[19]  Lutz Tobiska,et al.  Numerical Methods for Singularly Perturbed Differential Equations , 1996 .