Modelling lipid systems in fluid with Lattice Boltzmann Molecular Dynamics simulations and hydrodynamics

In this work we present the coupling between Dry Martini, an efficient implicit solvent coarse-grained model for lipids, and the Lattice Boltzmann Molecular Dynamics (LBMD) simulation technique in order to include naturally hydrodynamic interactions in implicit solvent simulations of lipid systems. After validating the implementation of the model, we explored several systems where the action of a perturbing fluid plays an important role. Namely, we investigated the role of an external shear flow on the dynamics of a vesicle, the dynamics of substrate release under shear, and inquired the dynamics of proteins and substrates confined inside the core of a vesicle. Our methodology enables future exploration of a large variety of biological entities and processes involving lipid systems at the mesoscopic scale where hydrodynamics plays an essential role, e.g. by modulating the migration of proteins in the proximity of membranes, the dynamics of vesicle-based drug delivery systems, or, more generally, the behaviour of proteins in cellular compartments.

[1]  Helgi I. Ingólfsson,et al.  Lipid and Peptide Diffusion in Bilayers: The Saffman-Delbrück Model and Periodic Boundary Conditions. , 2017, The journal of physical chemistry. B.

[2]  Helgi I Ingólfsson,et al.  CHARMM-GUI Martini Maker for Coarse-Grained Simulations with the Martini Force Field. , 2015, Journal of chemical theory and computation.

[3]  A. Shevchenko,et al.  Lipidomics: coming to grips with lipid diversity , 2010, Nature Reviews Molecular Cell Biology.

[4]  F. Szoka,et al.  A simple in vitro model to study the release kinetics of liposome encapsulated material. , 1998, Journal of controlled release : official journal of the Controlled Release Society.

[5]  W. Meier,et al.  Investigation of Horseradish Peroxidase Kinetics in an "Organelle-Like" Environment. , 2017, Small.

[6]  H. Stone,et al.  Membrane-induced hydroelastic migration of a particle surfing its own wave , 2018, Nature Physics.

[7]  C. Abrams,et al.  Lipid flip-flop vs. lateral diffusion in the relaxation of hemifusion diaphragms. , 2018, Biochimica et biophysica acta. Biomembranes.

[8]  Michael G. Lerner,et al.  Strong influence of periodic boundary conditions on lateral diffusion in lipid bilayer membranes. , 2015, The Journal of chemical physics.

[9]  Matthew B Stone,et al.  Super-Resolution Microscopy: Shedding Light on the Cellular Plasma Membrane. , 2017, Chemical reviews.

[10]  J. Segrest,et al.  Minimal size phosphatidylcholine vesicles: effects of radius of curvature on head group packing and conformation. , 1982, Biochemistry.

[11]  V Steinberg,et al.  Dynamics of a vesicle in general flow , 2009, Proceedings of the National Academy of Sciences.

[12]  P. V. Balaji,et al.  Effect of the choice of the pressure coupling method on the spontaneous aggregation of DPPC molecules. , 2005, The journal of physical chemistry. B.

[13]  D. Tieleman,et al.  The MARTINI force field: coarse grained model for biomolecular simulations. , 2007, The journal of physical chemistry. B.

[14]  Fikret Aydin,et al.  A review on phospholipid vesicles flowing through channels , 2018, MRS Communications.

[15]  Samuela Pasquali,et al.  The coarse-grained OPEP force field for non-amyloid and amyloid proteins. , 2012, The journal of physical chemistry. B.

[16]  Laquai Frederic,et al.  低濃度のPt(II)オクタエチルポルフィリンをドープした青色発光スピロビフルオレン‐アントラセン共重合体における効率的なアップコンバージョン蛍光 , 2005 .

[17]  Roland Faller,et al.  Coarse-grained modeling of lipids. , 2009, Chemistry and physics of lipids.

[18]  José Mario Martínez,et al.  PACKMOL: A package for building initial configurations for molecular dynamics simulations , 2009, J. Comput. Chem..

[19]  A. Mark,et al.  Coarse grained model for semiquantitative lipid simulations , 2004 .

[20]  Christian Eggeling,et al.  From Dynamics to Membrane Organization: Experimental Breakthroughs Occasion a "Modeling Manifesto". , 2018, Biophysical journal.

[21]  R. Böckmann,et al.  Membrane pore formation in atomistic and coarse-grained simulations. , 2016, Biochimica et biophysica acta.

[22]  Fikret Aydin,et al.  Flow-Induced Shape Reconfiguration, Phase Separation, and Rupture of Bio-Inspired Vesicles. , 2017, ACS nano.

[23]  G. Hummer,et al.  Hydrodynamics of Diffusion in Lipid Membrane Simulations. , 2018, Physical review letters.

[24]  Chenglong Xia,et al.  Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes , 2012, Proceedings of the National Academy of Sciences.

[25]  S. Melchionna,et al.  Three Weaknesses for Three Perturbations: Comparing Protein Unfolding Under Shear, Force, and Thermal Stresses. , 2018, The journal of physical chemistry. B.

[26]  Teresa Head-Gordon,et al.  An implicit solvent coarse-grained lipid model with correct stress profile. , 2010, The Journal of chemical physics.

[27]  A. L. Rabinovich,et al.  Force Field Development for Lipid Membrane Simulations. , 2016, Biochimica et biophysica acta.

[28]  S. Melchionna,et al.  Protein Simulations in Fluids: Coupling the OPEP Coarse-Grained Force Field with Hydrodynamics. , 2015, Journal of chemical theory and computation.

[29]  C. McCabe,et al.  A coarse-grained model for amorphous and crystalline fatty acids. , 2010, The Journal of chemical physics.

[30]  Régis Pomès,et al.  Accelerating Convergence in Molecular Dynamics Simulations of Solutes in Lipid Membranes by Conducting a Random Walk along the Bilayer Normal. , 2013, Journal of chemical theory and computation.

[31]  A. Mikhailov,et al.  Hydrodynamic collective effects of active protein machines in solution and lipid bilayers , 2015, Proceedings of the National Academy of Sciences.

[32]  Robin Angus Silver,et al.  Physical determinants of vesicle mobility and supply at a central synapse , 2016, eLife.

[33]  W. Mao,et al.  Mesoscale modeling: solving complex flows in biology and biotechnology. , 2013, Trends in biotechnology.

[34]  Andrew Zgorski,et al.  Toward Hydrodynamics with Solvent Free Lipid Models: STRD Martini. , 2016, Biophysical journal.

[35]  G. Meer,et al.  Membrane lipids: where they are and how they behave , 2008, Nature Reviews Molecular Cell Biology.

[36]  Victor Steinberg,et al.  Dynamics of vesicles in shear and rotational flows: Modal dynamics and phase diagram , 2010, 1004.4733.

[37]  K. Gawrisch,et al.  Lateral diffusion rates of lipid, water, and a hydrophobic drug in a multilamellar liposome. , 2003, Biophysical journal.

[38]  Carol K. Hall,et al.  Molecular dynamics simulations of DPPC bilayers using "LIME", a new coarse-grained model. , 2013, The journal of physical chemistry. B.

[39]  J. Rodrigues,et al.  Supramolecular Organization and Functional Implications of K+ Channel Clusters in Membranes , 2017, Angewandte Chemie.

[40]  B. Nordén,et al.  Shear-induced membrane fusion in viscous solutions. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[41]  Fabio Mavelli,et al.  Enzymatic reactions in confined environments. , 2016, Nature nanotechnology.

[42]  Howard A Stone,et al.  Dynamics of shear-induced ATP release from red blood cells , 2008, Proceedings of the National Academy of Sciences.

[43]  H. Berendsen,et al.  Molecular dynamics simulations of a fully hydrated dipalmitoylphosphatidylcholine bilayer with different macroscopic boundary conditions and parameters , 1996 .

[44]  A. Elcock,et al.  Striking Effects of Hydrodynamic Interactions on the Simulated Diffusion and Folding of Proteins. , 2009, Journal of chemical theory and computation.

[45]  A. Garcia,et al.  Acceleration of Lateral Equilibration in Mixed Lipid Bilayers Using Replica Exchange with Solute Tempering , 2014, Journal of Chemical Theory and Computation.

[46]  Marc Baaden,et al.  The OPEP protein model: from single molecules, amyloid formation, crowding and hydrodynamics to DNA/RNA systems. , 2014, Chemical Society reviews.

[47]  B. Zimm Dynamics of Polymer Molecules in Dilute Solution: Viscoelasticity, Flow Birefringence and Dielectric Loss , 1956 .

[48]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[49]  A. Malevanets,et al.  Solute molecular dynamics in a mesoscale solvent , 2000 .

[50]  W F Drew Bennett,et al.  Improved Parameters for the Martini Coarse-Grained Protein Force Field. , 2013, Journal of chemical theory and computation.

[51]  Joseph E. Goose,et al.  Methodologies for the analysis of instantaneous lipid diffusion in MD simulations of large membrane systems. , 2014, Faraday discussions.

[52]  P. Ahlrichs,et al.  Simulation of a single polymer chain in solution by combining lattice Boltzmann and molecular dynamics , 1999, cond-mat/9905183.

[53]  J. Skolnick,et al.  On the importance of hydrodynamic interactions in lipid membrane formation. , 2013, Biophysical journal.

[54]  Simone Melchionna,et al.  Multiscale simulation of molecular processes in cellular environments , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[55]  Jeffrey Skolnick,et al.  Crowding and hydrodynamic interactions likely dominate in vivo macromolecular motion , 2010, Proceedings of the National Academy of Sciences.

[56]  Ilpo Vattulainen,et al.  Coarse-grained model for phospholipid/cholesterol bilayer. , 2004, The Journal of chemical physics.

[57]  S. Marrink,et al.  Molecular mechanism of cardiolipin-mediated assembly of respiratory chain supercomplexes , 2016, Chemical science.

[58]  Simone Melchionna,et al.  Electrokinetic Lattice Boltzmann Solver Coupled to Molecular Dynamics: Application to Polymer Translocation. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[59]  Zhen Cao,et al.  The multiscale coarse-graining method. XI. Accurate interactions based on the centers of charge of coarse-grained sites. , 2015, The Journal of chemical physics.

[60]  T. Ishikawa,et al.  Shear-Induced Migration of a Transmembrane Protein within a Vesicle. , 2019, Biophysical journal.

[61]  G. Hummer,et al.  Divergent Diffusion Coefficients in Simulations of Fluids and Lipid Membranes. , 2016, The journal of physical chemistry. B.

[62]  Simone Melchionna,et al.  Hydrodynamic effects on β-amyloid (16-22) peptide aggregation. , 2016, The Journal of chemical physics.

[63]  F. Roosen‐Runge,et al.  Protein self-diffusion in crowded solutions , 2011, Proceedings of the National Academy of Sciences.

[64]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[65]  W. Shinoda Permeability across lipid membranes. , 2016, Biochimica et biophysica acta.

[66]  P. E. Rouse A Theory of the Linear Viscoelastic Properties of Dilute Solutions of Coiling Polymers , 1953 .

[67]  Ville R. I. Kaila,et al.  Redox-induced activation of the proton pump in the respiratory complex I , 2015, Proceedings of the National Academy of Sciences.

[68]  J. García de la Torre,et al.  Calculation of hydrodynamic properties of globular proteins from their atomic-level structure. , 2000, Biophysical journal.

[69]  J. Di Meglio,et al.  Shear-induced permeation and fusion of lipid vesicles. , 2005, Journal of colloid and interface science.

[70]  Helgi I. Ingólfsson,et al.  Computational Lipidomics with insane: A Versatile Tool for Generating Custom Membranes for Molecular Simulations. , 2015, Journal of chemical theory and computation.

[71]  Helgi I Ingólfsson,et al.  Dry Martini, a coarse-grained force field for lipid membrane simulations with implicit solvent. , 2015, Journal of chemical theory and computation.

[72]  Haruki Nakamura,et al.  Announcing the worldwide Protein Data Bank , 2003, Nature Structural Biology.

[73]  S. Melchionna,et al.  Molecular Mechanism of Protein Unfolding under Shear: A Lattice Boltzmann Molecular Dynamics Study. , 2018, The journal of physical chemistry. B.

[74]  M. Kröger,et al.  Self-assembled core-polyethylene glycol-lipid shell nanoparticles demonstrate high stability in shear flow. , 2017, Physical chemistry chemical physics : PCCP.

[75]  Martin Hof,et al.  On multivalent receptor activity of GM1 in cholesterol containing membranes. , 2015, Biochimica et biophysica acta.

[76]  Solvent-free model for self-assembling fluid bilayer membranes: stabilization of the fluid phase based on broad attractive tail potentials. , 2005, The Journal of chemical physics.

[77]  S. Melchionna,et al.  Multi-scale simulations of biological systems using the OPEP coarse-grained model. , 2017, Biochemical and biophysical research communications.

[78]  Holger Schönherr,et al.  Block-copolymer vesicles as nanoreactors for enzymatic reactions. , 2009, Small.

[79]  Burkhard Dünweg,et al.  Lattice Boltzmann Simulation of Polymer-Solvent Systems , 1998 .

[80]  T. Porter,et al.  Thermosensitive liposomes for localized delivery and triggered release of chemotherapy. , 2013, Journal of controlled release : official journal of the Controlled Release Society.

[81]  A. Bujacz,et al.  Structures of bovine, equine and leporine serum albumin. , 2012, Acta crystallographica. Section D, Biological crystallography.

[82]  Mu-Ping Nieh,et al.  Fluid phase lipid areas and bilayer thicknesses of commonly used phosphatidylcholines as a function of temperature. , 2011, Biochimica et biophysica acta.

[83]  Aniket Magarkar,et al.  Rational design of liposomal drug delivery systems, a review: Combined experimental and computational studies of lipid membranes, liposomes and their PEGylation. , 2016, Biochimica et biophysica acta.

[84]  Julia Wang,et al.  Mechanoresponsive materials for drug delivery: Harnessing forces for controlled release☆ , 2017, Advanced drug delivery reviews.

[85]  Leticia Hosta-Rigau,et al.  Recent Progress in Micro/Nanoreactors toward the Creation of Artificial Organelles , 2018, Advanced healthcare materials.

[86]  S. Melchionna,et al.  Charge transport in nanochannels: a molecular theory. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[87]  Massimo Bernaschi,et al.  MUPHY: A parallel MUlti PHYsics/scale code for high performance bio-fluidic simulations , 2009, Comput. Phys. Commun..

[88]  Stephanie M. Linker,et al.  Carbon Nanotubes Mediate Fusion of Lipid Vesicles. , 2017, ACS nano.

[89]  J. Hurley,et al.  Negative membrane curvature catalyzes nucleation of endosomal sorting complex required for transport (ESCRT)-III assembly , 2015, Proceedings of the National Academy of Sciences.

[90]  R. Benzi,et al.  The lattice Boltzmann equation: theory and applications , 1992 .