Observation of von Kármán Vortex Street in an Atomic Superfluid Gas.

We report on the experimental observation of vortex cluster shedding from a moving obstacle in an oblate atomic Bose-Einstein condensate. At low obstacle velocities v above a critical value, vortex clusters consisting of two like-sign vortices are generated to form a regular configuration like a von Kármán street, and as v is increased, the shedding pattern becomes irregular with many different kinds of vortex clusters. In particular, we observe that the Stouhal number associated with the shedding frequency exhibits saturation behavior with increasing v. The regular-to-turbulent transition of the vortex cluster shedding reveals remarkable similarities between a superfluid and a classical viscous fluid. Our work opens a new direction for experimental investigations of the superfluid Reynolds number characterizing universal superfluid hydrodynamics.

[1]  W. Kwon,et al.  Periodic shedding of vortex dipoles from a moving penetrable obstacle in a Bose-Einstein condensate , 2015, 1508.00958.

[2]  Superfluid Reynolds number and the transition from potential flow to turbulence in superfluid 4He at millikelvin temperatures , 2015, 1506.05003.

[3]  W. Kwon,et al.  Critical velocity for vortex shedding in a Bose-Einstein condensate , 2015, 1502.03542.

[4]  Ashton S. Bradley,et al.  Identifying a Superfluid Reynolds Number via Dynamical Similarity. , 2014, Physical review letters.

[5]  A. J. Allen,et al.  Classical-like wakes past elliptical obstacles in atomic Bose-Einstein condensates , 2014, 1411.4842.

[6]  Hysteresis in quantized vortex shedding , 2014, 1405.4577.

[7]  W. Kwon,et al.  Relaxation of superfluid turbulence in highly oblate Bose-Einstein condensates , 2014, 1403.4658.

[8]  Ashton S. Bradley,et al.  Classical and quantum regimes of two-dimensional turbulence in trapped Bose-Einstein condensates , 2012, 1209.2447.

[9]  Ashton S. Bradley,et al.  Energy Spectra of Vortex Distributions in Two-Dimensional Quantum Turbulence , 2012, 1204.1103.

[10]  Kazuki Sasaki,et al.  Bénard-von Kármán vortex street in a Bose-Einstein condensate. , 2010, Physical review letters.

[11]  Ashton S. Bradley,et al.  Observation of vortex dipoles in an oblate Bose-Einstein condensate. , 2009, Physical review letters.

[12]  C. Barenghi Is the Reynolds number infinite in superfluid turbulence , 2008 .

[13]  G. Volovik Classical and quantum regimes of superfluid turbulence , 2003, cond-mat/0310021.

[14]  L. Skrbek,et al.  An intrinsic velocity-independent criterion for superfluid turbulence , 2003, Nature.

[15]  D. Pritchard,et al.  Observation of vortex phase singularities in Bose-Einstein condensates. , 2001, Physical review letters.

[16]  Anatoly Svidzinsky,et al.  Vortices in a trapped dilute Bose-Einstein condensate , 2001, cond-mat/0102003.

[17]  C. Adams,et al.  Vortex shedding and drag in dilute Bose-Einstein condensates , 2000, cond-mat/0004430.

[18]  Charles S. Adams,et al.  VORTEX FORMATION IN DILUTE INHOMOGENEOUS BOSE-EINSTEIN CONDENSATES , 1998 .

[19]  C. Williamson Vortex Dynamics in the Cylinder Wake , 1996 .

[20]  Frisch,et al.  Transition to dissipation in a model of superflow. , 1992, Physical review letters.