Prospective pathway for a green and enhanced friedelin production through supercritical fluid extraction of Quercus cerris cork

[1]  Carlos M. Silva,et al.  Scale-up studies of the supercritical fluid extraction of triterpenic acids from Eucalyptus globulus bark , 2014 .

[2]  Carlos M. Silva,et al.  Supercritical solvent selection (CO2 versus ethane) and optimization of operating conditions of the extraction of lycopene from tomato residues: Innovative analysis of extraction curves by a response surface methodology and cost of manufacturing hybrid approach , 2014 .

[3]  Armando J. D. Silvestre,et al.  Supercritical fluid extraction of vegetable matrices: Applications, trends and future perspectives of a convincing green technology , 2014 .

[4]  C. Freire,et al.  Bioactive Triterpenic Acids: From Agroforestry Biomass Residues to Promising Therapeutic Tools , 2014 .

[5]  A. Silvestre,et al.  Extraction and Purification of Triterpenoids using Supercritical Fluids: From Lab to Exploitation , 2014 .

[6]  Carlos M. Silva,et al.  Improved Stokes–Einstein based models for diffusivities in supercritical CO2 , 2014 .

[7]  Carlos M. Silva,et al.  Optimization of the supercritical fluid coextraction of oil and diterpenes from spent coffee grounds using experimental design and response surface methodology , 2014 .

[8]  Carlos M. Silva,et al.  Lipophilic extractives from the bark of Eucalyptus grandis x globulus, a rich source of methyl morolate: Selective extraction with supercritical CO2 , 2013 .

[9]  Helena Pereira,et al.  Variability of the Chemical Composition of Cork , 2013 .

[10]  Carlos M. Silva,et al.  Optimization of the supercritical fluid extraction of triterpenic acids from Eucalyptus globulus bark using experimental design , 2013 .

[11]  Carlos M. Silva,et al.  Supercritical fluid extraction of triterpenic acids from Eucalyptus globulus bark , 2012 .

[12]  M. Sáiz-Abajo,et al.  Supercritical fluid extraction and microencapsulation of bioactive compounds from red pepper (Capsicum annum L.) by-products , 2012 .

[13]  Carlos M. Silva,et al.  Supercritical Fluid Extraction of Eucalyptus globulus Bark—A Promising Approach for Triterpenoid Production , 2012, International journal of molecular sciences.

[14]  H. Pereira,et al.  Temperature-induced structural and chemical changes in cork from Quercus cerris , 2012 .

[15]  H. Sovová,et al.  Supercritical fluid extraction from vegetable materials , 2011 .

[16]  S. Ignacimuthu,et al.  Anti‐inflammatory, analgesic and antipyretic effects of friedelin isolated from Azima tetracantha Lam. in mouse and rat models , 2011, The Journal of pharmacy and pharmacology.

[17]  O. Yesil‐Celiktas,et al.  Effects of process parameters on supercritical CO2 extraction of total phenols from strawberry (Arbutus unedo L.) fruits: An optimization study. , 2011, Journal of separation science.

[18]  Carlos M. Silva,et al.  Review of kinetic models for supercritical fluid extraction , 2011 .

[19]  H. Pereira,et al.  Bark anatomy of Quercus cerris L. var. cerris from Turkey , 2011, Turkish Journal of Botany.

[20]  Ying Zhang,et al.  Anti-tumor activity of triterpenoid-rich extract from bamboo shavings (Caulis bamfusae in Taeniam) , 2010 .

[21]  Y. Man,et al.  Optimization of supercritical fluid extraction of phytosterol from roselle seeds with a central composite design model , 2010 .

[22]  H. Pereira,et al.  The chemical composition of cork and phloem in the rhytidome of Quercus cerris bark , 2010 .

[23]  L. Fiori,et al.  Grape by-products: extraction of polyphenolic compounds using supercritical CO2 and liquid organic solvent – a preliminary investigation Subproductos de la uva: extracción de compuestos polifenólicos usando CO2 supercrítico y disolventes orgánicos líquidos – una investigación preliminar , 2009 .

[24]  Helena Pereira,et al.  Cork : biology, production and uses , 2007 .

[25]  S. Yalkowsky,et al.  Estimating Pure-Component Vapor Pressures of Complex Organic Molecules: Part II. , 2006 .

[26]  Iolanda De Marco,et al.  Supercritical fluid extraction and fractionation of natural matter , 2006 .

[27]  P. Pinto,et al.  Triterpenic and other lipophilic components from industrial cork byproducts. , 2006, Journal of agricultural and food chemistry.

[28]  F. Temelli,et al.  Solubility behavior of ternary systems of lipids, cosolvents and supercritical carbon dioxide and processing aspects , 2005 .

[29]  Ange Bighelli,et al.  Extractives of cork (Quercus suber L.): chemical composition of dichloromethane and supercritical CO2 extracts , 2005 .

[30]  H. Pereira,et al.  THE PERIDERM DEVELOPMENT IN QUERCUS SUBER , 2004 .

[31]  J. Daun,et al.  An evaluation of supercritical fluid extraction as an analytical tool to determine fat in canola, flax, solin, and mustard , 2002 .

[32]  Jean-Marie Desjobert,et al.  Composition and chemical variability of the triterpene fraction of dichloromethane extracts of cork (Quercus suber L.) , 2002 .

[33]  Jorge A. Marrero,et al.  Group-contribution based estimation of pure component properties , 2001 .

[34]  J. Vilegas,et al.  Comparison of extraction and clean‐up methods for the analysis of friedelan‐3‐ol and friedelin from leaves of Maytenus aquifolium Martius (Celastraceae) , 2000 .

[35]  F. Recasens,et al.  Free liquid-to-supercritical fluid mass transfer in packed beds , 1997 .

[36]  K. Pitzer,et al.  Improving equation-of-state accuracy in the critical region; equations for carbon dioxide and neopentane as examples , 1988 .