Vertically Segregated Structure and Properties of Small Molecule–Polymer Blend Semiconductors for Organic Thin‐Film Transistors

A comprehensive structure and performance study of thin blend films of the small‐molecule semiconductor, 2,8‐difluoro‐5,11‐bis(triethylsilylethynyl)anthradithiophene (diF‐TESADT), with various insulating binder polymers in organic thin‐film transistors is reported. The vertically segregated composition profile and nanostructure in the blend films are characterized by a combination of complementary experimental methods including grazing incidence X‐ray diffraction, neutron reflectivity, variable angle spectroscopic ellipsometry, and near edge X‐ray absorption fine structure spectroscopy. Three polymer binders are considered: atactic poly(α‐methylstyrene), atactic poly(methylmethacrylate), and syndiotactic polystyrene. The choice of polymer can strongly affect the vertical composition profile and the extent of crystalline order in blend films due to the competing effects of confinement entropy, interaction energy with substrate surfaces, and solidification kinetics. The variations in the vertically segregated composition profile and crystalline order in thin blend films explain the significant impacts of binder polymer choice on the charge carrier mobility of these films in the solution‐processed bottom‐gate/bottom‐contact thin‐film transistors.

[1]  R. J. Kline,et al.  Zone-refinement effect in small molecule-polymer blend semiconductors for organic thin-film transistors. , 2011, Journal of the American Chemical Society.

[2]  Alberto Salleo,et al.  Microstructural Characterization and Charge Transport in Thin Films of Conjugated Polymers , 2010, Advanced materials.

[3]  D. Bradley,et al.  The Influence of Film Morphology in High‐Mobility Small‐Molecule:Polymer Blend Organic Transistors , 2010 .

[4]  David S. Germack,et al.  Interfacial Segregation in Polymer/Fullerene Blend Films for Photovoltaic Devices , 2010 .

[5]  Donal D. C. Bradley,et al.  Solution-processed organic transistors based on semiconducting blends , 2010 .

[6]  K. Nomoto,et al.  Organic Thin-Film Transistors with Phase Separation of Polymer-Blend Small-Molecule Semiconductors: Dependence on Molecular Weight and Types of Polymer , 2009 .

[7]  John E. Anthony,et al.  Effects of polymorphism on charge transport in organic semiconductors , 2009 .

[8]  David S. Germack,et al.  Substrate-dependent interface composition and charge transport in films for organic photovoltaics , 2009 .

[9]  Gang Li,et al.  Recent Progress in Polymer Solar Cells: Manipulation of Polymer:Fullerene Morphology and the Formation of Efficient Inverted Polymer Solar Cells , 2009 .

[10]  T. Anthopoulos,et al.  High‐Performance Polymer‐Small Molecule Blend Organic Transistors , 2009 .

[11]  John E. Anthony,et al.  Organic Single-Crystal Field-Effect Transistors of a Soluble Anthradithiophene , 2008 .

[12]  Vivek M. Prabhu,et al.  Structure and properties of small molecule-polymer blend semiconductors for organic thin film transistors. , 2008, Journal of the American Chemical Society.

[13]  Jiro Kasahara,et al.  Solution-processed organic thin-film transistors with vertical nanophase separation , 2008 .

[14]  S. Yeates,et al.  Organic field effect transistors from ambient solution processed low molar mass semiconductor–insulator blends , 2008 .

[15]  Ullrich Scherf,et al.  Organic semiconductors for solution-processable field-effect transistors (OFETs). , 2008, Angewandte Chemie.

[16]  Wi Hyoung Lee,et al.  Versatile Use of Vertical‐Phase‐Separation‐Induced Bilayer Structures in Organic Thin‐Film Transistors , 2008 .

[17]  John E. Anthony,et al.  Contact-induced crystallinity for high-performance soluble acene-based transistors and circuits. , 2008, Nature materials.

[18]  Sankar Subramanian,et al.  Chromophore fluorination enhances crystallization and stability of soluble anthradithiophene semiconductors. , 2008, Journal of the American Chemical Society.

[19]  Alberto Salleo,et al.  Solution Based Self‐Assembly of an Array of Polymeric Thin‐Film Transistors , 2007 .

[20]  J. Fréchet,et al.  Organic semiconducting oligomers for use in thin film transistors. , 2007, Chemical reviews.

[21]  P. Duxbury,et al.  Self-assembled multilayers of nanocomponents. , 2007, Nano letters.

[22]  Yang Yang,et al.  Patterning organic single-crystal transistor arrays , 2006, Nature.

[23]  René A. J. Janssen,et al.  Multicomponent semiconducting polymer systems with low crystallization-induced percolation threshold , 2006, Nature materials.

[24]  John E Anthony,et al.  Functionalized acenes and heteroacenes for organic electronics. , 2006, Chemical reviews.

[25]  Robert A. Street,et al.  Surface‐Induced Self‐Encapsulation of Polymer Thin‐Film Transistors , 2006 .

[26]  P. Blom,et al.  Organic thin-film electronics from vitreous solution-processed rubrene hypereutectics , 2005, Nature materials.

[27]  A. Mayer,et al.  Thickness Dependence of Mobility in Pentacene Thin‐Film Transistors , 2005 .

[28]  Gilles Horowitz,et al.  Organic thin film transistors: From theory to real devices , 2004 .

[29]  Fabio Biscarini,et al.  Spatially correlated charge transport in organic thin film transistors. , 2004, Physical review letters.

[30]  M. Grunze,et al.  An extension of the mean free path approach to X-ray absorption spectroscopy , 2002 .

[31]  Richard H. Friend,et al.  Vertically segregated polymer-blend photovoltaic thin-film structures through surface-mediated solution processing , 2002 .

[32]  A. Monkman,et al.  Measurement of the Anisotropic Refractive Indices of Spin Cast Thin Poly(2‐methoxy‐5‐(2′‐ethyl‐hexyloxy)‐p‐phenylenevinylene) (MEH–PPV) Films , 2002 .

[33]  A. Mayes,et al.  Surface Modification via Chain End Segregation in Polymer Blends , 1996 .

[34]  T. Russell On the reflectivity of polymers: Neutrons and X-rays , 1996 .

[35]  H. Winter,et al.  Dynamic mechanical measurement of crystallization-induced gelation in thermoplastic elastomeric poly(propylene) , 1991 .

[36]  T. Russell,et al.  A lattice model for the surface segregation of polymer chains due to molecular weight effects , 1990 .

[37]  D. Y. Yoon,et al.  Lattice model for crystal-amorphous interphases in lamellar semicrystalline polymers: effects of tight-fold energy and chain incidence density , 1989 .

[38]  P. Iannelli,et al.  Solvent‐induced crystallization of glassy syndiotactic polystyrene , 1988 .

[39]  H. Berghmans,et al.  Thermoreversible gelation in syndiotactic polystyrene/solvent systems , 1996 .

[40]  E. Martuscelli,et al.  Syndiotactic polystyrene: crystallization and melting behaviour , 1991 .

[41]  T. Russell,et al.  X-ray and neutron reflectivity for the investigation of polymers , 1990 .