Bounding the Number of Minimal Dominating Sets: A Measure and Conquer Approach

We show that the number of minimal dominating sets in a graph on n vertices is at most 1.7697n, thus improving on the trivial $\mathcal{O}(2^{n}/\sqrt{n})$ bound. Our result makes use of the measure and conquer technique from exact algorithms, and can be easily turned into an $\mathcal{O}(1.7697^{n})$ listing algorithm. Based on this result, we derive an $\mathcal{O}(2.8805^{n})$ algorithm for the domatic number problem, and an $\mathcal{O}(1.5780^{n})$ algorithm for the minimum-weight dominating set problem. Both algorithms improve over the previous algorithms.

[1]  G. P. Erorychev Proof of the van der Waerden conjecture for permanents , 1981 .

[2]  David Eppstein Small Maximal Independent Sets and Faster Exact Graph Coloring , 2001, WADS.

[3]  Fabrizio Grandoni,et al.  Measure and Conquer: Domination - A Case Study , 2005, ICALP.

[4]  Jack Edmonds,et al.  Matching: A Well-Solved Class of Integer Linear Programs , 2001, Combinatorial Optimization.

[5]  Michel Rigo,et al.  Abstract numeration systems and tilings , 2005 .

[6]  David Eppstein,et al.  Quasiconvex analysis of backtracking algorithms , 2003, SODA '04.

[7]  Michael Jünger,et al.  Combinatorial optimization - Eureka, you shrink! , 2003 .

[8]  M. Held,et al.  A dynamic programming approach to sequencing problems , 1962, ACM National Meeting.

[9]  Richard Beigel,et al.  Finding maximum independent sets in sparse and general graphs , 1999, SODA '99.

[10]  Gerhard J. Woeginger,et al.  Exact Algorithms for NP-Hard Problems: A Survey , 2001, Combinatorial Optimization.

[11]  J. Moon,et al.  On cliques in graphs , 1965 .

[12]  Fabrizio Grandoni,et al.  Exact Algorithms for Hard Graph Problems , 2004 .

[13]  Robert E. Tarjan,et al.  Finding a Maximum Independent Set , 1976, SIAM J. Comput..

[14]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[15]  Eugene L. Lawler,et al.  A Note on the Complexity of the Chromatic Number Problem , 1976, Inf. Process. Lett..

[16]  Fedor V. Fomin,et al.  Exact (Exponential) Algorithms for Treewidth and Minimum Fill-In , 2004, ICALP.

[17]  Jochen Harant,et al.  On Domination in Graphs , 2005, Discuss. Math. Graph Theory.

[18]  Jon M. Kleinberg,et al.  A deterministic (2-2/(k+1))n algorithm for k-SAT based on local search , 2002, Theor. Comput. Sci..

[19]  Kazuo Iwama,et al.  Improved upper bounds for 3-SAT , 2004, SODA '04.

[20]  Fabrizio Grandoni,et al.  A note on the complexity of minimum dominating set , 2006, J. Discrete Algorithms.

[21]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[22]  Jörg Rothe,et al.  An Exact 2.9416n Algorithm for the Three Domatic Number Problem , 2005, MFCS.

[23]  Gerhard J. Woeginger,et al.  Exact (Exponential) Algorithms for the Dominating Set Problem , 2004, WG.

[24]  Michael A. Henning,et al.  Domination in graphs , 1998 .